Skip to main content

Correlated System and Measurement Noise Processes

  • Chapter
  • First Online:
  • 4799 Accesses

Abstract

In the previous two chapters, Kalman filtering for the model involving uncorrelated system and measurement noise processes was studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Chui .

Exercises

Exercises

  1. 4.1

    Let \(\mathbf {v}\) be a random vector and define

    $$\begin{aligned} L(\mathbf {x},\ \mathbf {v})=E(\mathbf {x})+\langle \mathbf {x},\ \mathbf {v}\rangle [\Vert \mathbf {v}\Vert ^{2}]^{-1}(\mathbf {v}-E(\mathbf {v})). \end{aligned}$$

    Show that \(L(\cdot ,\ \mathbf {v})\) is a linear operator in the sense that

    $$\begin{aligned} L(A\mathbf {x}+B\mathbf {y},\ \mathbf {v})=AL(\mathbf {x},\ \mathbf {v})+BL(\mathbf {y},\ \mathbf {v}) \end{aligned}$$

    for all constant matrices A and B and random vectors \(\mathbf {x}\) and \(\mathbf {y}\).

  2. 4.2

    Let \(\mathbf {v}\) be a random vector and \(L(\cdot ,\ \mathbf {v})\) be defined as above. Show that if a is a constant vector then \(L(\mathbf {a},\ \mathbf {v})=\mathbf {a}\).

  3. 4.3

    For a real-valued function f and a matrix \(A=[a_{ij}]\), define

    $$\begin{aligned} \frac{df}{dA}=\left[ \frac{\partial f}{\partial a_{ij}}\right] ^{\top }. \end{aligned}$$

    By taking

    $$\begin{aligned} \frac{\partial }{\partial H}(tr\Vert \mathbf {x}-\mathbf {y}\Vert ^{2})=0, \end{aligned}$$

    show that the solution \(\mathbf {x}^{*}\) of the minimization problem

    $$\begin{aligned} tr\Vert \mathbf {x}^{*}-\mathbf {y}\Vert ^{2}=\mathop {min}\limits _{H}tr\Vert \mathbf {x}-\mathbf {y}\Vert ^{2}, \end{aligned}$$

    where \(\mathbf {y}=E(\mathbf {x})+H(\mathbf {v}-E(\mathbf {v}))\), can be obtained by setting

    $$\begin{aligned} \mathbf {x}^{*}=E(\mathbf {x})-\langle \mathbf {x},\ \mathbf {v}\rangle [\Vert \mathbf {v}\Vert ^{2}]^{-1}(E(\mathbf {v})-\mathbf {v}), \end{aligned}$$

    where

    $$\begin{aligned} H^{*}=\langle \mathbf {x},\ \mathbf {v}\rangle [\Vert \mathbf {v}\Vert ^{2}]^{-1}. \end{aligned}$$
  4. 4.4

    Consider the linear stochastic system (4.16). Let

    $$\begin{aligned} \mathbf {v}^{k-1}=\left[ \begin{array}{c} \mathbf {v}_{0}\\ \vdots \\ \mathbf {v}_{k-1} \end{array}\right] \qquad and\qquad \mathbf {v}^{k}=\left[ \begin{array}{c} \mathbf {v}^{k-1}\\ \mathbf {v}_{k} \end{array}\right] . \end{aligned}$$

    Define \(L(\mathbf {x},\ \mathbf {v})\) as in Exercise 4.1 and let \(\mathbf {x}_{k}^{\#}=\mathbf {x}_{k}-\hat{\mathbf {x}}_{k|k-1}\) with \(\hat{\mathbf {x}}_{k|k-1} :=L(\mathbf {x}_{k},\mathbf {v}^{k-1})\). Prove that

    $$\begin{aligned}&\langle \underline{\xi }_{k-1},\ \mathbf {v}^{k-2}\rangle =0,\qquad \langle \underline{\eta }_{k-1},\ \mathbf {v}^{k-2}\rangle =0,\\&\langle \underline{\xi }_{k-1},\ \mathbf {x}_{k-1}\rangle =0,\qquad \langle \underline{\eta }_{k-1},\ \mathbf {x}_{k-1}\rangle =0,\\&\langle \mathbf {x}_{k-1}^{\#},\ \underline{\xi }_{k-1}\rangle =0,\qquad \langle \mathbf {x}_{k-1}^{\#},\ \underline{\eta }_{k-1}\rangle =0,\\&\langle \hat{\mathbf {x}}_{k-1|k-2},\ \underline{\xi }_{k-1}\rangle =0,\qquad \langle \hat{\mathbf {x}}_{k-1|k-2},\ \underline{\eta }_{k-1}\rangle =0. \end{aligned}$$
  5. 4.5

    Verify that

    $$\begin{aligned} (I-G_{k}C_{k})P_{k, k-1}C_{k}=G_{k}R_{k} \end{aligned}$$

    and

    $$\begin{aligned} \langle \mathbf {x}_{k-1}-\hat{\mathbf {x}}_{k-1|k-1},\ \mathrm {\Gamma }_{k-1}\underline{\xi }_{k-1}-K_{k-1}\underline{\eta }_{k-1}\rangle =O_{n\times n}. \end{aligned}$$
  6. 4.6

    Consider the linear deterministic/stochastic system

    $$\begin{aligned} \left[ \begin{array}{rcl} \mathbf {x}_{k+1}&{}=&{}A_{k}\mathbf {x}_k+B_{k}\mathbf {u}_{k}+\mathrm {\Gamma }_{k}\underline{\xi }_{k}\\ \mathbf {v}_{k}&{}=&{}C_{k}\mathbf {x}_{k}+D_{k}\mathbf {u}_{k}+\underline{\eta }_{k}, \end{array}\right. \end{aligned}$$

    where \(\{\mathbf {u}_{k}\}\) is a given sequence of deterministic control inputs. Suppose that the same assumption for (4.16) is satisfied. Derive the Kalman filtering algorithm for this model.

  7. 4.7

    Consider the following so-called ARMAX (auto-regressive moving-average model with exogeneous inputs) model in signal processing:

    $$\begin{aligned} v_{k}=-a_{1}v_{k-1}-a_{2}v_{k-2}-a_{3}v_{k-3}+b_{0}u_{k}+b_{1}u_{k-1}+b_{2}u_{k-2}+c_{0}e_{k}+c_{1}e_{k-1}, \end{aligned}$$

    where \(\{v_{j}\}\) and \(\{u_{j}\}\) are output and input signals, respectively, \(\{e_{j}\}\) is a zero-mean Gaussian white noise sequence with \(Var(e_{j})=s_{j}>0\), and \(a_{j}, b_{j}, c_{j}\) are constants.

    1. (a)

      Derive a state-space description for this ARMAX model.

    2. (b)

      Specify the Kalman filtering algorithm for this state-space description.

  8. 4.8

    More generally, consider the following ARMAX model in signal processing:

    $$\begin{aligned} v_{k}=-\sum _{j=1}^{n}a_{j}v_{k-j}+\sum _{j=0}^{m}b_{j}u_{k-j}+\sum _{j=0}^{\ell }c_{j}e_{k-j}, \end{aligned}$$

    where \(0\le m,\ell \le n\), \(\{v_{j}\}\) and \(\{u_{j}\}\) are output and input signals, respectively, \(\{e_{j}\}\) is a zero-mean Gaussian white noise sequence with \(Var(e_{j})=s_{j}>0\), and \(a_{j}, b_{j}, c_{j}\) are constants.

    1. (a)

      Derive a state-space description for this ARMAX model.

    2. (b)

      Specify the Kalman filtering algorithm for this state-space description.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chui, C.K., Chen, G. (2017). Correlated System and Measurement Noise Processes. In: Kalman Filtering. Springer, Cham. https://doi.org/10.1007/978-3-319-47612-4_4

Download citation

Publish with us

Policies and ethics