Skip to main content

EEG Monitoring of Depth of Anesthesia

  • Chapter
  • First Online:
Total Intravenous Anesthesia and Target Controlled Infusions

Abstract

The anaesthetist has two priorities: controlling consciousness and ensuring survival. The first demonstration of ether anaesthesia (anaesthesia = general anaesthesia or GA) made history in 1846, because ether kept the patient both insensible and alive. Likewise, modern anaesthesia is accepted because patients are highly likely to both remain unconscious and survive. These favourable outcomes are related to anaesthetic dose, and there is confidence about the effective and safe dose range largely through the experience from large numbers of patients. We are also reassured by the knowledge that the effective dose can be exceeded, up to a point, without harming the patient. Obviously, vital physiological functions may need to be supported, and for the sake of simplicity in this discussion, it is assumed that anaesthesia does not have delayed or long-lasting toxic effects. In essence therefore we can, within wide yet reasonable limits, expose patients to excessive doses and expect the vast majority to be unharmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Anaesthesia, general anaesthesia or GA.

References

  1. Fifth National Audit Project of the Royal College of Anaesthetists and the Association of Anaesthetists of Great Britain and Ireland: Accidental Awareness during General Anaesthesia in the United Kingdom and Ireland. Report and findings September 2014 Editors Pandit J & Cook T. http://www.nationalauditprojects.org.uk/NAP5report#pt.

  2. Pandit JJ, Andrade J, Bogod DG, Hitchman JM, Jonker WR, Lucas N, Mackay JH, Nimmo AF, O’Connor K, O’Sullivan EP, Paul RG, Palmer JH, Plaat F, Radcliffe JJ, Sury MR, Torevell HE, Wang M, Hainsworth J, Cook TM. Royal College of Anaesthetists and the Association of Anaesthetists of Great Britain and Ireland. Fifth National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth. 2014;113(4):549–59.

    Google Scholar 

  3. NAP5 Fifth National Audit Project of the Royal College of Anaesthetists in collaboration with the Association of Anaesthetists of Great Britain and Ireland. 2014. http://www.nationalauditprojects.org.uk/NAP5report#pt. Accessed Mar 2016.

  4. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363(9423):1757–63.

    Article  CAS  PubMed  Google Scholar 

  5. Sury MR, Palmer JH, Cook TM, Pandit JJ. The state of UK anaesthesia: a survey of national health service activity in 2013. Br J Anaesth. 2014;113(4):575–84.

    Article  CAS  PubMed  Google Scholar 

  6. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78(4):707–12.

    Article  CAS  PubMed  Google Scholar 

  7. Antognini JF, Carstens E. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth. 2002;89(1):156–66.

    Article  CAS  PubMed  Google Scholar 

  8. Schwab HS, Seeberger MD, Eger EI, Kindler CH, Filipovic M. Sevoflurane decreases bispectral index values more than does halothane at equal MAC multiples. Anesth Analg. 2004;99:1723–7.

    Article  CAS  PubMed  Google Scholar 

  9. Myles PS, Symons JA, Leslie K. Anaesthetists’ attitudes towards awareness and depth-of-anaesthesia monitoring. Anaesthesia. 2003;58(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  10. Cowley NJ, Laitenberger P, Liu B, Jarvis J, Clutton-Brock TH. Evaluation of a new analyser for rapid measurement of blood propofol concentration during cardiac surgery. Anaesthesia. 2012;67(8):870–4.

    Article  CAS  PubMed  Google Scholar 

  11. Liu B, Pettigrew DM, Bates S, Laitenberger PG, Troughton G. Performance evaluation of a whole blood propofol analyser. J Clin Monit Comput. 2012;26(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  12. Harrison GR, Critchley AD, Mayhew CA, Thompson JM. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study. Br J Anaesth. 2003;91(6):797–9.

    Article  CAS  PubMed  Google Scholar 

  13. Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, et al. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth. 2009;103(6):822–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92(3):727–38.

    Article  CAS  PubMed  Google Scholar 

  15. Eleveld DJ, Proost JH, Cortínez LI, Absalom AR, Struys MM. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221–37.

    Article  CAS  PubMed  Google Scholar 

  16. Kakazu C, Lippmann M. Bispectral index monitors, non-invasive cardiac output monitors, and haemodynamics of induction agents. Br J Anaesth. 2014;112(1):169.

    Article  CAS  PubMed  Google Scholar 

  17. Kertai MD, Pal N, Palanca BJ, Lin N, Searleman SA, Zhang L, Burnside BA, Finkel KJ, Avidan MS, B-Unaware Study Group. Association of perioperative risk factors and cumulative duration of low bispectral index with intermediate-term mortality after cardiac surgery in the B-Unaware trial. Anesthesiology. 2010;112:1116–27.

    Article  PubMed  Google Scholar 

  18. Sessler DI, Sigl JC, Kelley SD, Chamoun NG, Manberg PJ, Saager L, Kurz A, Greenwald S. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116:1195–203.

    Article  PubMed  Google Scholar 

  19. Prys-Roberts C. Anaesthesia: a practical or impractical construct? Br J Anaesth. 1987;59:1341–5.

    Article  CAS  PubMed  Google Scholar 

  20. Galla SJ, Rocco AG, Vandam LD. Evaluation of the traditional signs and stages of anesthesia: an electroencephalographic and clinical study. Anesthesiology. 1958;19:328–38.

    Article  CAS  PubMed  Google Scholar 

  21. Kim TK, Niklewski PJ, Martin JF, Obara S, Egan TD. Enhancing a sedation score to include truly noxious stimulation: the extended observer’s assessment of alertness and sedation (EOAA/S). Br J Anaesth. 2015;115:569–77.

    Article  CAS  PubMed  Google Scholar 

  22. Chernik DA, Gillings D, Laine H, et al. Validity and reliability of the observer’s assessment of alertness/sedation scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–51.

    Article  CAS  PubMed  Google Scholar 

  23. Pandit JJ. Monitoring (un)consciousness: the implications of a new definition of ‘anaesthesia’. Anaesthesia. 2014;69:801–15.

    Article  CAS  PubMed  Google Scholar 

  24. American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Practice Guidelines for Sedation and Analgesia by Non-Anesthesiologists. Anesthesiology. 2002;96:1004–17.

    Google Scholar 

  25. Kato T, Suzuki A, Ikeda K. Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane. Anesthesiology. 1998;88(3):642–50.

    Article  Google Scholar 

  26. Jones JG. Awareness during general anaesthesia-what are we monitoring? In: Jordan C, Vaughan DJA, Newton DEF, editors. Memory and awareness in anaesthesia IV. London: Imperial College Press; 2000. p. 3–40.

    Chapter  Google Scholar 

  27. Koskinen M, Mustola S, Nen T. Relation of EEG spectrum progression to loss of responsiveness during induction of anesthesia with propofol. Clin Neurophysiol. 2005;116(9):2069–76.

    Google Scholar 

  28. Gugino LD, Chabot RJ, Prichep LS, John ER, Formanek V, Aglio LS. Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane. Br J Anaesth. 2001;87(3):421–8.

    Article  CAS  PubMed  Google Scholar 

  29. Schwender D, Daunderer M, Klasing S, Finsterer U, Peter K. Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane, desflurane and sevoflurane. Anaesthesia. 1998;53(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  30. Doyle PW, Matta BF. Burst suppression or isoelectric encephalogram for cerebral protection: evidence from metabolic suppression studies. Br J Anaesth. 1999;83(4):580–4.

    Article  CAS  PubMed  Google Scholar 

  31. Bennett C, Voss LJ, Barnard JP, Sleigh JW. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg. 2009;109:539–50.

    Article  PubMed  Google Scholar 

  32. Pilge S, Jordan D, Kreuzer M, Kochs EF, Schneider G. Burst suppression-MAC and burst suppression-CP50 as measures of cerebral effects of anaesthetics. Br J Anaesth. 2014;112:1067–74.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz MS, Colvin MP, Prior PF, Strunin L, Simpson BR, Weaver EJ, et al. The cerebral function monitor. Its value in predicting the neurological outcome in patients undergoing cardiopulmonary by-pass. Anaesthesia. 1973;28(6):611–8.

    Article  CAS  PubMed  Google Scholar 

  34. Maynard DE, Jenkinson JL. The cerebral function analysing monitor. Initial clinical experience, application and further development. Anaesthesia. 1984;39(7):678–90.

    Article  CAS  PubMed  Google Scholar 

  35. Escallier KE, Nadelson MR, Zhou D, Avidan MS. Monitoring the brain: processed electroencephalogram and peri-operative outcomes. Anaesthesia. 2014;69:899–910

    Google Scholar 

  36. Dressler O, Schneider G, Stockmanns G, Kochs EF. Awareness and the EEG power spectrum: analysis of frequencies. Br J Anaesth. 2004;93(6):806–9.

    Google Scholar 

  37. Dubois M, Savege TM, O’Carroll TM, Frank M. General anaesthesia and changes on the cerebral function monitor. Anaesthesia. 1978;33(2):157–164.

    Google Scholar 

  38. Zikov T, Bibian S, Dumont GA, Huzmezan M, Ries CR. Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans Biomed Eng. 2006;53:617–32.

    Article  PubMed  Google Scholar 

  39. Ní Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med. 2013;55(208):208ra148.

    Google Scholar 

  40. Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110:E1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Struys M, Versichelen L, Mortier E, Ryckaert D, De Mey JC, De DC, et al. Comparison of spontaneous frontal EMG, EEG power spectrum and bispectral index to monitor propofol drug effect and emergence. Acta Anaesthesiol Scand. 1998;42(6):628–36.

    Article  CAS  PubMed  Google Scholar 

  42. Vanluchene AL, Vereecke H, Thas O, Mortier EP, Shafer SL, Struys MM. Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology. 2004;101(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  43. Shoushtarian M, Sahinovic MM, Absalom AR, Kalmar AF, Vereecke HE, Liley DT, Struys MM. Comparisons of electroencephalographically derived measures of hypnosis and antinociception in response to standardized stimuli during target-controlled propofol-remifentanil anesthesia. Anesth Analg. 2016;122:382–92.

    Article  CAS  PubMed  Google Scholar 

  44. Thornton C, Sharpe RM. Evoked responses in anaesthesia. Br J Anaesth. 1998;81(5):771–81.

    Article  CAS  PubMed  Google Scholar 

  45. Gajraj RJ, Doi M, Mantzaridis H, Kenny GN. Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia. Br J Anaesth. 1999;82(5):672–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kreuer S, Bruhn J, Larsen R, Hoepstein M, Wilhelm W. Comparison of alaris AEP index and bispectral index during propofol-remifentanil anaesthesia. Br J Anaesth. 2003;91:336–40.

    Google Scholar 

  47. Smith WD, Dutton RC, Smith NT. Measuring the performance of anesthetic depth indicators. Anesthesiology. 1996;84(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  48. Mason KP, Michna E, Zurakowski D, Burrows PE, Pirich MA, Carrier M, Fontaine PJ, Sethna NF. Value of bispectral index monitor in differentiating between moderate and deep Ramsay sedation scores in children. Paediatr Anaesth. 2006;16(12):1226–31.

    Article  PubMed  Google Scholar 

  49. Powers KS, Nazarian EB, Tapyrik SA, Kohli SM, Yin H, van der Jagt EW, Sullivan JS, Rubenstein JS. Bispectral index as a guide for titration of propofol during procedural sedation among children. Pediatrics. 2005;115(6):1666–74.

    Google Scholar 

  50. Gill M, Green SM, Krauss B. A study of the Bispectral Index Monitor during procedural sedation and analgesia in the emergency department. Ann Emerg Med. 2003;41(2):234–41.

    Article  PubMed  Google Scholar 

  51. Tunstall ME. Detecting wakefulness during general anaesthesia for caesarean section. Br Med J. 1977;1:1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pandit JJ, Russell IF, Wang M. Interpretations of responses using the isolated forearm technique in general anaesthesia: a debate. Br J Anaesth. 2015;115 suppl 1:i32–45.

    Article  PubMed  Google Scholar 

  53. Russell IF, Wang M. Absence of memory for intra-operative information during surgery with total intravenous anaesthesia. Br J Anaesth. 2001;86:196–202.

    Article  CAS  PubMed  Google Scholar 

  54. Pandit JJ. Isolated forearm – or isolated brain? Interpreting responses during anaesthesia – or ‘dysanaesthesia’. Anaesthesia. 2013;68:995–1009.

    Article  CAS  PubMed  Google Scholar 

  55. Russell IF. The ability of bispectral index to detect intra-operative wakefulness during total intravenous anaesthesia compared with the isolated forearm technique. Anaesthesia. 2013;68:502–11.

    Article  CAS  PubMed  Google Scholar 

  56. Russell IF. The Narcotrend ‘depth of anaesthesia’ monitor cannot reliably detect consciousness during general anaesthesia: an investigation using the isolated forearm technique. Br J Anaesth. 2006;96(3):346–52.

    Article  CAS  PubMed  Google Scholar 

  57. Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003;97(2):488–91, table.

    Google Scholar 

  58. Schuller PJ, Newell S, Strickland PA, Barry JJ. Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth. 2015;115 Suppl 1:i95–103.

    Google Scholar 

  59. Sakai T, Singh H, Mi WD, Kudo T, Matsuki A. The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion. Acta Anaesthesiol Scand. 1999;43:212–6.

    Article  CAS  PubMed  Google Scholar 

  60. Liu N, Le Guen M, Boichut N, Genty A, Hérail T, Schmartz D, Khefif G, Landais A, Bussac J, Charmeau A, Baars J, Rehberg B, Tricoche S, Chazot T, Sessler DI, Fischler M. Nitrous oxide does not produce a clinically important sparing effect during closed-loop delivered propofol–remifentanil anaesthesia guided by the bispectral index: a randomized multicentre study. Br J Anaesth. 2014;112(5):842–51.

    Article  CAS  PubMed  Google Scholar 

  61. Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: a prospective case study. Lancet. 2000;355:707–11.

    Article  CAS  PubMed  Google Scholar 

  62. Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, Seeman R, Murat I, Constant I. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analg. 2008;106(4):1109–16.

    Google Scholar 

  63. West N, Dumont GA, van Heusden K, Petersen CL, Khosravi S, Soltesz K, Umedaly A, Reimer E, Ansermino JM. Robust closed-loop control of induction and maintenance of propofol anesthesia in children. Paediatr Anaesth. 2013;23(8):712–9.

    Article  PubMed  Google Scholar 

  64. Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge JA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358(11):1097–108.

    Article  CAS  PubMed  Google Scholar 

  65. Sneyd JR, Mathews DM. Memory and awareness during anaesthesia. Br J Anaesth. 2008;100(6):742–4.

    Article  CAS  PubMed  Google Scholar 

  66. Avidan MS, Jacobsohn E, Glick D, et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med. 2011;365:591–600.

    Article  CAS  PubMed  Google Scholar 

  67. Reves JG, Glass PSA, Lubarsky DA, MvEvoy MD, Martinez-Ruiz R. Intravenous anesthetics. In: Miller RD, editor. Miller’s Anesthesia. Philadelphia: Churchill Livingston; 2007. p. 719–68.

    Google Scholar 

  68. Nordström O, Engström AM, Persson S, Sandin R. Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand. 1997;41:978–84.

    Article  PubMed  Google Scholar 

  69. Sandin R, Norström O. Awareness during total i.v. anaesthesia. Br J Anaesth. 1993;71:782–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. J. Sury FRCA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sury, M.R.J. (2017). EEG Monitoring of Depth of Anesthesia. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics