Skip to main content

Modelling Visual Communication with UAS

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9991))

Abstract

This work presents a communication concept for vision based interaction with airborne UAS. Unlike previous approaches, this research focuses on high level mission tasking of UAS without having to rely on radio data link. The paper provides the overall concept design and focuses on communication via gestures. A respective model describing the gestural syntax for high level commands as well as a feedback mechanism to enable bidirectional human-machine communication for different operational modes is presented in detail. First real world experiments evaluate the feasibility of the deployed sensors for the intended purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dlib.net/license.html.

  2. 2.

    OpenNI framework is an open source SDK for the development of 3D sensing middleware libraries and applications, available at http://openni.ru/index.html.

  3. 3.

    NiTE was a powerful middleware of PrimeSense that featured a robust user skeleton joint tracking and gesture recognition. Since its purchase by Apple Inc. in 2013, it is officially not available any more.

  4. 4.

    http://click.intel.com/intel-realsense-developer-kit-r200.html.

  5. 5.

    C++ HOG detector implementation included in Dlib library.

  6. 6.

    Using the C++ HOG detector and correlation tracker implementation included in Dlib library.

References

  1. Venetsky, L., Tieman, J.W.: Robotic gesture recognition system, 20 October 2009

    Google Scholar 

  2. Pfeil, K., Koh, S.L., LaViola, J.: Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 257–266 (2013)

    Google Scholar 

  3. Wagner, P.K., Peres, S.M., Madeo, R.C.B., de Moraes Lima, C.A., de Almeida Freitas, F.: Gesture unit segmentation using spatial-temporal information and machine learning. In: FLAIRS Conference (2014)

    Google Scholar 

  4. Monajjemi, V.M., Wawerla, J., Vaughan, R., Mori, G.: HRI in the sky: creating and commanding teams of UAVs with a vision-mediated gestural interface. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 617–623 (2013)

    Google Scholar 

  5. Nagi, J., Giusti, A., Di Caro, G.A., Gambardella, L.M.: HRI in the sky: controlling UAVs using face poses and hand gestures. In: HRI, pp. 252–253 (2014)

    Google Scholar 

  6. Vanetsky, L., Husni, M., Yager, M.: Gesture recognition for UCAV-N flight deck operations: problem definition final report, Naval Air Systems Command, January 2003

    Google Scholar 

  7. Cicirelli, G., Attolico, C., Guaragnella, C., D’Orazio, T.: A kinect-based gesture recognition approach for a natural human robot interface. Int. J. Adv. Robot. Syst. 12, 22 (2015)

    Google Scholar 

  8. McNeill, D.: Hand and Mind: What Gestures Reveal about Thought. University of Chicago Press, Chicago (1992)

    Google Scholar 

  9. Bressem, J., Ladewig, S.H.: Rethinking gesture phases: articulatory features of gestural movement? Semiotica 2011(184), 53–91 (2011)

    Article  Google Scholar 

  10. Kendon, A.: Gesticulation and speech: two aspects of the process of utterance. Relatsh. Verbal Nonverbal Commun. 25, 207–227 (1980)

    Google Scholar 

  11. Fricke, E.: Grammatik Multimodal: Wie Wörter und Gesten Zusammenwirken. Walter De Gruyter Incorporated, Boston (2012)

    Book  Google Scholar 

  12. Kranstedt, A., Kühnlein, P., Wachsmuth, I.: Deixis in multimodal human computer interaction: an interdisciplinary approach. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 112–123. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Monajjemi, M., Bruce, J., Sadat, S.A., Wawerla, J., Vaughan, R.: UAV, do you see me? Establishing mutual attention between an uninstrumented human and an outdoor UAV in flight. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3614–3620 (2015)

    Google Scholar 

  14. Anjum, M.L., Ahmad, O., Rosa, S., Yin, J., Bona, B.: Skeleton tracking based complex human activity recognition using kinect camera. In: Beetz, M., Johnston, B., Williams, M.-A. (eds.) ICSR 2014. LNCS, vol. 8755, pp. 23–33. Springer, Heidelberg (2014)

    Google Scholar 

  15. Verschae, R., Ruiz-del-Solar, J.: Object detection: current and future directions. Front. Robot. AI 2, 1475 (2015)

    Article  Google Scholar 

  16. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  18. Danelljan, M., Häger, G., Shahbaz Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, p. 65.1 (2014)

    Google Scholar 

  19. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  20. Schwarz, L.A., Mkhitaryan, A., Mateus, D., Navab, N.: Estimating human 3D pose from time-of-flight images based on geodesic distances and optical flow. In: 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, pp. 700–706 (2011)

    Google Scholar 

  21. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Schelle, A., Stütz, P. (2016). Modelling Visual Communication with UAS. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2016. Lecture Notes in Computer Science(), vol 9991. Springer, Cham. https://doi.org/10.1007/978-3-319-47605-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47605-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47604-9

  • Online ISBN: 978-3-319-47605-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics