Advertisement

Multi-agent Poli-RRT*

Optimal Constrained RRT-based Planning for Multiple Vehicles with Feedback Linearisable Dynamics
  • Matteo Ragaglia
  • Maria Prandini
  • Luca BascettaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9991)

Abstract

Planning a trajectory that is optimal according to some performance criterion, collision-free, and feasible with respect to dynamic and actuation constraints is a key functionality of an autonomous vehicle. Poli-RRT* is a sample-based planning algorithm that serves this purpose for a single vehicle with feedback linearisable dynamics. This paper extends Poli-RRT* to a multi-agent cooperative setting where multiple vehicles share the same environment and need to avoid each other besides some static obstacles.

Keywords

Planning Optimal control Feasability Safety Autonomous vehicles Multi-agent systems 

References

  1. 1.
    Pivtoraiko, M., Knepper, R., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26, 308–333 (2009)CrossRefGoogle Scholar
  2. 2.
    Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 28, 933–945 (2009)CrossRefGoogle Scholar
  3. 3.
    Tahirovic, A., Magnani, G.: General framework for mobile robot navigation using passivity-based MPC. IEEE Trans. Autom. Control 56, 184–190 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20, 378–400 (2001)CrossRefGoogle Scholar
  5. 5.
    Barraquand, J., Kavraki, L., Latombe, J., Motwani, R., Li, T., Raghavan, P.: A random sampling scheme for path planning. Int. J. Robot. Res. 16, 759–774 (1997)CrossRefGoogle Scholar
  6. 6.
    Branicky, M., Curtiss, M., Levine, J., Morgan, S.: RRTs for nonlinear, discrete, and hybrid planning and control. In: IEEE Conference on Decision and Control (CDC), vol. 1, pp. 657–663 (2003)Google Scholar
  7. 7.
    Branicky, M., Curtiss, M., Levine, J., Morgan, S.: Sampling-based planning, control and verification of hybrid systems. IEEE Proc. Control Theory Appl. 153, 575–590 (2006)CrossRefGoogle Scholar
  8. 8.
    Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: IEEE Conference on Decision and Control (CDC), Atlanta, GA (2010)Google Scholar
  9. 9.
    Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. In: Robotics: Science and Systems (RSS), Zaragoza, Spain (2010)Google Scholar
  10. 10.
    Karaman, S., Walter, M., Perez, A., Frazzoli, E., Teller, S.: Real-time motion planning using the RRT*. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)Google Scholar
  11. 11.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30, 846–894 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning with deterministic \(\mu \)-calculus specifications. In: American Control Conference (ACC) (2012)Google Scholar
  13. 13.
    Perez, A., Karaman, S., Walter, M., Shkolnik, A., Frazzoli, E., Teller, S.: Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011)Google Scholar
  14. 14.
    hwan Jeon, J., Karaman, S., Frazzoli, E.: Anytime computation of time-optimal off-road vehicle maneuvers using the RRT*. In: IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 3276–3282 (2011)Google Scholar
  15. 15.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  16. 16.
    Webb, D., van den Berg, J.: Kinodynamic RRT*: asymptotically optimal motion planning for robots with linear dynamics. In: IEEE Intenrational Conference on Robotics and Automation (ICRA), pp. 5054–5061 (2013)Google Scholar
  17. 17.
    Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2537–2542 (2012)Google Scholar
  18. 18.
    Goretkin, G., Perez, A., Platt, R., Konidaris, G.: Optimal sampling-based planning for linear-quadratic kinodynamic systems. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)Google Scholar
  19. 19.
    Ragaglia, M., Prandini, M., Bascetta, L.: Poli-RRT*: optimal RRT-based planning for constrained and feedback linearisable vehicle dynamics. In: European Control Conference (ECC) (2015)Google Scholar
  20. 20.
    Stipanovic, D., Inalhan, G., Teo, R., Tomlin, C.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40, 1285–1296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matteo Ragaglia
    • 1
  • Maria Prandini
    • 1
  • Luca Bascetta
    • 1
    Email author
  1. 1.Politecnico di Milano - Piazza Leonardo da VinciMilanItaly

Personalised recommendations