Qanary – The Fast Track to Creating a Question Answering System with Linked Data Technology

  • Kuldeep SinghEmail author
  • Andreas Both
  • Dennis Diefenbach
  • Saedeeh Shekarpour
  • Didier Cherix
  • Christoph Lange
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9989)


Question answering (QA) systems focus on making sense out of data via an easy-to-use interface. However, these systems are very complex and integrate a lot of technology tightly. Previously presented QA systems are mostly singular and monolithic implementations. Hence, their reusability is limited. In contrast, we follow the research agenda of establishing an ecosystem for components of QA systems, which will enable the QA community to elevate the reusability of such components and to intensify their research activities.

In this paper, we present a reference implementation of the Qanary methodology for creating QA systems. Qanary relies on linked data vocabularies and provides a fast track to integrating QA components into a light-weight, message-driven, component-oriented architecture.


Software reusability Question answering Semantic search Ontology Annotation model 



Parts of this work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642795, project: Answering Questions using Web Data (WDAqua).


  1. 1.
    Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary – a methodology for vocabulary-driven open question answering systems. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-34129-3_38 CrossRefGoogle Scholar
  2. 2.
    Damljanovic, D., Agatonovic, M., Cunningham, H.: Freya: an interactive way of querying linked data using natural language. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 125–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Lopez, V., Fernández, M., Motta, E., Stieler, N.: PowerAqua: supporting users in querying and exploring the semantic web. Semant. Web 3(3), 249–265 (2011)Google Scholar
  4. 4.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C., DBpedia spotlight: shedding light on the web of documents. In: I-SEMANTICS (2011)Google Scholar
  5. 5.
    Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational patterns with semantic types. In: EMNLP-CoNLL (2012)Google Scholar
  6. 6.
    Shekarpour, S., Marx, E., Ngomo, A.-C.N., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. Web Semant. Sci. Serv. Agents WWW 30, 39–51 (2015)CrossRefGoogle Scholar
  7. 7.
    Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven vocabulary for promoting the interoperability of question answering systems. In: 10th IEEE International Conference on Semantic Computing (ICSC) (2016)Google Scholar
  8. 8.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.-C.N., Gerber, D., Cimiano P.: Template-based question answering over RDF data. In: WWW (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kuldeep Singh
    • 1
    Email author
  • Andreas Both
    • 2
  • Dennis Diefenbach
    • 3
  • Saedeeh Shekarpour
    • 4
  • Didier Cherix
    • 6
  • Christoph Lange
    • 1
    • 5
  1. 1.Fraunhofer IAISSankt AugustinGermany
  2. 2.Mercateo AGKöthenGermany
  3. 3.Laboratoire Hubert CurienSaint-EtienneFrance
  4. 4.Knoesis CenterFairbornUSA
  5. 5.University of BonnBonnGermany
  6. 6.FLAVIA IT-Management GmbHKasselGermany

Personalised recommendations