Advertisement

SentiCircles: A Platform for Contextual and Conceptual Sentiment Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9989)

Abstract

Sentiment analysis over social streams offers governments and organisations a fast and effective way to monitor the publics’ feelings towards policies, brands, business, etc. In this paper we present SentiCircles, a platform that captures feedback from social media conversations and applies contextual and conceptual sentiment analysis models to extract and summarise sentiment from these conversations. It provides a novel sentiment navigation design where contextual sentiment is captured and presented at term/entity level, enabling a better alignment of positive and negative sentiment to the nature of the public debate.

Keywords

Social media Sentiment analysis 

References

  1. 1.
    Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of COLING, Beijing, China (2010)Google Scholar
  2. 2.
    Cambria, E.: An introduction to concept-level sentiment analysis. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 478–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the ICWSM, Barcelona, Spain (2011)Google Scholar
  4. 4.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: ICWSM, vol. 11, pp. 122–129 (2010)Google Scholar
  5. 5.
    Saif, H., Fernandez, M., He, Y., Alani, H.: SentiCircles for contextual and conceptual semantic sentiment analysis of Twitter. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 83–98. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of Twitter. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Saif, H., He, Y., Fernandez, M., Alani, H.: Contextual semantics for sentiment analysis of Twitter. Inf. Process. Manag. 52(1), 5–19 (2016). doi: 10.1016/j.ipm.2015.01.005. ISSN: 0306–4573CrossRefGoogle Scholar
  8. 8.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. Am. Soc. Inf. Sci. Technol. 63(1), 163–173 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Knowledge Media InstituteOpen UniversityMilton KeynesUK
  2. 2.IT Innovation CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations