Towards a Platform for Curation Technologies: Enriching Text Collections with a Semantic-Web Layer

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9989)


In an attempt to put a Semantic Web-layer that provides linguistic analysis and discourse information on top of digital content, we develop a platform for digital curation technologies. The platform offers language-, knowledge- and data-aware services as a flexible set of workflows and pipelines for the efficient processing of various types of digital content. The platform is intended to enable human experts (knowledge workers) to get a grasp and understand the contents of large document collections in an efficient way so that they can curate, process and further analyse the collection according to their sector-specific needs.


Digital Curation Linguistic Linked Data NLP 



“Digitale Kuratierungstechnologien” is supported by the German Federal Ministry of Education and Research, Unternehmen Region, WK-P (No. 03WKP45).


  1. 1.
    Lewis, D., Brennan, R., Finn, L., Jones, D., Meehan, A., O’sullivan, D., Hellmann, S., Sasaki, F.: Global intelligent content: active curation of language resources using linked data. In: Proceedings of LREC 2014, Reykjavik (2014)Google Scholar
  2. 2.
    Lewis, D., Gómez-Pérez, A., Hellman, S., Sasaki, F.: The role of linked data for content annotation and translation. In: Proceedings of the 2014 European Data Forum. EDF 2014 (2014).
  3. 3.
    Mazur, P., Dale, R.: WikiWars: a new corpus for research on temporal expressions. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. EMNLP 2010, pp. 913–922. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  4. 4.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems. I-Semantics 2011, pp. 1–8. ACM, New York (2011)Google Scholar
  5. 5.
    Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning multilingual named entity recognition from Wikipedia. Artif. Intell. 194, 151–175 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rehm, G.: Hypertextsorten: Definition - Struktur - Klassifikation. Ph.D. thesis, Institutfür Germanistik, Angewandte Sprachwissenschaft und Computerlinguistik, Justus-Liebig-Universität Giessen (2005)Google Scholar
  7. 7.
    Rehm, G., Sasaki, F.: Semantische Technologien und Standards für das mehrsprachige Europa. In: Ege, B., Humm, B., Reibold, A. (eds.) Corporate Semantic Web, pp. 247–257. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Sasaki, F., Gornostay, T., Dojchinovski, M., Osella, M., Mannens, E., Stoitsis, G., Richie, P., Declerck, T., Koidl, K.: Introducing freme: deploying linguistic linked data. In: Proceedings of the 4th Workshop of the Multilingual Semantic Web. MSW 2015 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Language Technology Lab, DFKI GmbHBerlinGermany

Personalised recommendations