Advertisement

Moving Real-Time Linked Data Query Evaluation to the Client

  • Ruben TaelmanEmail author
  • Ruben Verborgh
  • Pieter Colpaert
  • Erik Mannens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9989)

Abstract

Traditional rdf stream processing engines work completely server-side, which contributes to a high server cost. For allowing a large number of concurrent clients to do continuous querying, we extend the low-cost Triple Pattern Fragments (tpf) interface with support for time-sensitive queries. In this poster, we give the overview of a client-side rdf stream processing engine on top of tpf. Our experiments show that our solution significantly lowers the server load while increasing the load on the clients. Preliminary results indicate that our solution moves the complexity of continuously evaluating real-time queries from the server to the client, which makes real-time querying much more scalable for a large amount of concurrent clients when compared to the alternatives.

Keywords

Linked data Linked data fragments sparql Continuous querying Real-time querying 

Notes

Acknowledgments

The described research activities were funded by iMinds and Ghent University, the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), the Fund for Scientific Research Flanders (FWO Flanders), and the European Union. Ruben Verborgh is a Postdoctoral Fellow of the Research Foundation Flanders.

References

  1. 1.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf streams with c-sparql. SIGMOD Rec. 39(1), 20–26 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41338-4_18 CrossRefGoogle Scholar
  3. 3.
    Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing time into rdf. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2007)CrossRefGoogle Scholar
  4. 4.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and Linked Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_24 CrossRefGoogle Scholar
  5. 5.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). doi: 10.1007/11926078_3 CrossRefGoogle Scholar
  6. 6.
    Verborgh, R., et al.: Querying datasets on the Web with high availability. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11964-9_12 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ruben Taelman
    • 1
    Email author
  • Ruben Verborgh
    • 1
  • Pieter Colpaert
    • 1
  • Erik Mannens
    • 1
  1. 1.imec – Ghent University – IDLabGhentBelgium

Personalised recommendations