Advertisement

Secure Multiparty Sorting Protocols with Covert Privacy

  • Peeter LaudEmail author
  • Martin Pettai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10014)

Abstract

We introduce the notion of covert privacy for secret-sharing-based secure multiparty computation (SMC) protocols. We show how covertly or actively private SMC protocols, together with recently introduced verifiable protocols allow the construction of SMC protocols secure against active adversaries. For certain computational problems, the relative overhead of our protocols, when compared to protocols secure against passive adversaries only, approaches zero as the problem size increases.

We analyse the existing adaptations of sorting algorithms to SMC protocols and find that unless they are already using actively secure primitive protocols, none of them are covertly private or verifiable. We propose a covertly private sorting protocol based on radix sort, the relative overhead of which again approaches zero, when compared to the passively secure protocol. Our results reduce the computational effort needed to counteract active adversaries for a significant range of SMC applications, where sorting is used as a subroutine.

Keywords

Secret Sharing Active Adversary Secure Protocol Ideal Functionality Sorting Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs board evaluated a tax fraud detection system based on secure multi-party computation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47854-7_14 CrossRefGoogle Scholar
  3. 3.
    Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students and taxes: a privacy-preserving social study using secure computation. In: Proceedings of Privacy Enhancing Technologies (PoPETS) (2016)Google Scholar
  4. 4.
    Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally composable secure multi-party computation primitives. In: CSF 2014, pp. 184–198Google Scholar
  5. 5.
    Bogdanov, D., Laur, S., Talviste, R.: A practical analysis of oblivious sorting algorithms for secure multi-party computation. In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788, pp. 59–74. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11599-3_4 Google Scholar
  6. 6.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88313-5_13 CrossRefGoogle Scholar
  7. 7.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  8. 8.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03549-4_20 CrossRefGoogle Scholar
  9. 9.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145Google Scholar
  10. 10.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC 2002, pp. 494–503Google Scholar
  11. 11.
    Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30576-7_19 CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40203-6_1 CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_38 CrossRefGoogle Scholar
  14. 14.
    Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure computation and its use in verifiable linear programming. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31517-1_14 CrossRefGoogle Scholar
  15. 15.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_25 CrossRefGoogle Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229Google Scholar
  18. 18.
    Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an efficient sorting algorithm for practical secure multi-party computation. Cryptology ePrint Archive, Report 2014/121 (2014)Google Scholar
  19. 19.
    Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37682-5_15 CrossRefGoogle Scholar
  20. 20.
    Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. Cryptology ePrint Archive, Report 2011/122 (2011)Google Scholar
  21. 21.
    Keller, M., Orsini, E., Scholl, P., Mascot: faster malicious arithmetic secure computation with oblivious transfer. Cryptology ePrint Archive, Report 2016/505 (2016)Google Scholar
  22. 22.
    Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: CCS 2013, pp. 549–560Google Scholar
  23. 23.
    Laud, P.: Parallel oblivious array access for secure multiparty computation and privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol. 2015(2), 188–205 (2015)Google Scholar
  24. 24.
    Laud, P.: Stateful abstractions of secure multiparty computation. In: Laud, P., Kamm, L. (eds.) Applications of Secure Multiparty Computation. Cryptology and Information Security, vol. 13, pp. 26–42. IOS Press, Amsterdam (2015)Google Scholar
  25. 25.
    Laud, P., Pankova, A.: Verifiable computation in multiparty protocols with honest majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 146–161. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12475-9_11 Google Scholar
  26. 26.
    Laud, P., Pankova, A.: Preprocessing-based verification of multiparty protocols with honest majority. Cryptology ePrint Archive, Report 2015/674 (2015)Google Scholar
  27. 27.
    Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24861-0_18 CrossRefGoogle Scholar
  28. 28.
    Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computation protocols against active adversaries. In: CSF 2015, pp. 75–89Google Scholar
  29. 29.
    Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-party sorting, selection, and permuting. In: ASIACCS 2010, pp. 226–237Google Scholar
  30. 30.
    Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164Google Scholar
  31. 31.
    Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24316-5_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Cybernetica ASTartuEstonia

Personalised recommendations