A Survey on Internal Interfaces Used by Exploits and Implications on Interface Diversification

  • Sampsa RautiEmail author
  • Samuel Lauren
  • Joni Uitto
  • Shohreh Hosseinzadeh
  • Jukka Ruohonen
  • Sami Hyrynsalmi
  • Ville Leppänen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10014)


The idea of interface diversification is that internal interfaces in the system are transformed into unique secret instances. On one hand, the trusted programs in the system are accordingly modified so that they can use the diversified interfaces. On the other hand, the malicious code injected into a system does not know the diversification secret, that is the language of the diversified system, and thus it is rendered useless. Based on our study of 500 exploits, this paper surveys the different interfaces that are targeted in malware attacks and can potentially be diversified in order to prevent the malware from reaching its goals. In this study, we also explore which of the identified interfaces have already been covered in existing diversification research and which interfaces should be considered in future research. Moreover, we discuss the benefits and drawbacks of diversifying these interfaces. We conclude that diversification of various internal interfaces could prevent or mitigate roughly 80 % of the analyzed exploits. Most interfaces we found have already been diversified as proof-of-concept implementations but diversification is not widely used in practical systems.


System Call Execution Environment Attack Type Internal Interface Native Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Trans. Inf. Syst. Secur. 15(2), 8:1–8:29 (2012)CrossRefGoogle Scholar
  2. 2.
    Athanasopoulos, E., Krithinakis, A., Markatos, E.P.: An architecture for enforcing JavaScript randomization in Web2.0 applications. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 203–209. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18178-8_18 CrossRefGoogle Scholar
  3. 3.
    Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E.P., Karagiannis, T.: xJS: practical XSS prevention for web application development. In: Proceedings of the 2010 USENIX conference on Web application development, WebApps 2010, pp. 1–12. USENIX Association (2010)Google Scholar
  4. 4.
    Barrantes, E.G., Ackley, D.H., Forrest, S., Stefanović, D.: Randomized instruction set emulation. ACM Trans. Inf. Syst. Secur. 8(1), 3–40 (2005)CrossRefGoogle Scholar
  5. 5.
    Boyd, S.W., Kc, G.S., Locasto, M.E., Prevelakis, V., Keromytis, A.D.: On the general applicability of instruction-set randomization. IEEE Trans. Dependable Secure Comput. 7(3), 255–270 (2010)CrossRefGoogle Scholar
  6. 6.
    Boyd, S.W., Keromytis, A.D.: SQLrand: preventing SQL injection attacks. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–302. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24852-1_21 CrossRefGoogle Scholar
  7. 7.
    Chew, M., Song, D.: Mitigating buffer overflows by operating system randomization. Technical report, CMU (2002)Google Scholar
  8. 8.
    Chongkyung, K., Jinsuk, J., Bookholt, C., Xu, J., Peng, N.: Address space layout permutation (ASLP): towards fine-grained randomization of commodity software. In: 2006 Computer Security Applications Conference, ACSAC 2006, pp. 339–348, December 2006Google Scholar
  9. 9.
    Cohen, F.B.: Operating system protection through program evolution. Comput. Secur. 12(6), 565–584 (1993)CrossRefGoogle Scholar
  10. 10.
    Coppens, B., De Sutter, B., De Bosschere, K.: Protecting your software updates. IEEE Secur. Priv. 11(2), 47–54 (2013)CrossRefGoogle Scholar
  11. 11.
    Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), HOTOS 1997 (1997)Google Scholar
  12. 12.
    Franz, M.: E unibus pluram: massive-scale software diversity as a defense mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms, NSPW 2010, pp. 7–16. ACM (2010)Google Scholar
  13. 13.
    Gupta, A., Kerr, S., Kirkpatrick, M.S., Bertino, E.: Marlin: a fine grained randomization approach to defend against ROP attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 293–306. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38631-2_22 CrossRefGoogle Scholar
  14. 14.
    Gupta, A., Kirkpatrick, M.S., Bertino, E.: A secure architecture design based on application isolation, code minimization and randomization. In: 2013 IEEE Conference on Communications and Network Security (CNS), pp. 423–429, October 2013Google Scholar
  15. 15.
    Hosseinzadeh, S., Rauti, S., Laurén, S., Mäkelä, J.-M., Holvitie, J., Hyrynsalmi, S., Leppänen, V.: Using diversification and obfuscation techniques for software security: a systematic literature review (2016)Google Scholar
  16. 16.
    Hovav, S., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, F.: On the effectiveness of address-space randomization. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 298–307. ACM, New York (2004)Google Scholar
  17. 17.
    Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A., Brunthaler, S., Wimmer, C., Franz, M.: Compiler-generated software diversity. In: Jajodia, S., et al. (eds.) Moving Target Defense. Advances in Information Security, vol. 54, pp. 77–98. Springer, New York (2011)CrossRefGoogle Scholar
  18. 18.
    Jiang, X., Wang, H.J., Xu, D., Wang, Y.-M.: RandSys: Thwarting code injection attacks with system service interface randomization. In IEEE International Symposium on Reliable Distributed Systems, SRDS 2007, pp. 209–218 (2007)Google Scholar
  19. 19.
    Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with instruction-set randomization. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, CCS 2003, pp. 272–280. ACM, New York (2003)Google Scholar
  20. 20.
    Keromytis, A.D.: Randomized instruction sets and runtime environments past research and future directions. IEEE Secur. Priv. 7(1), 18–25 (2009)CrossRefGoogle Scholar
  21. 21.
    Kitchenham, B.: Guidelines for performing systematic literature reviews in software engineering. Technical report EBSE-2007-01, Keele University, School of Computer Science and Mathematics (2007)Google Scholar
  22. 22.
    Larsen, P., Brunthaler, S., Franz, M.: Security through diversity: are we there yet? IEEE Secur. Priv. 12(2), 28–35 (2014)CrossRefGoogle Scholar
  23. 23.
    Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diversity. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 276–291, May 2014Google Scholar
  24. 24.
    Lauren, S., Mäki, P., Rauti, S., Hosseinzadeh, S., Hyrynsalmi, S., Leppänen, V.: Symbol diversification of Linux binaries. In: Proceedings of World Congress on Internet Security (WorldCIS-2014) (2014)Google Scholar
  25. 25.
    Liang, Z., Liang, B., Li, L.: A system call randomization based method for countering code injection attacks. In: International Conference on Networks Security, Wireless Communications and Trusted Computing, NSWCTC 2009, pp. 584–587 (2009)Google Scholar
  26. 26.
    Locasto, M.E., Keromytis, A.D.: PachyRand: SQL randomization for the PostgreSQL JDBC driver. Technical report CUCS-033-05, Columbia University, Computer Science (2005)Google Scholar
  27. 27.
    Portokalidis, G., Keromytis, A.D.: Global ISR: toward a comprehensive defense against unauthorized code execution. In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving Target Defense, Creating Asymmetric Uncertainty for Cyber Threats. Advances in Information Security, vol. 54, pp. 49–76. Springer, New York (2011)CrossRefGoogle Scholar
  28. 28.
    Rauti, S., Lauren, S., Hosseinzadeh, S., Mäkelä, J.-M., Hyrynsalmi, S., Leppänen, V.: Diversification of system calls in Linux binaries. In: Proceedings of the 6th International Conference on Trustworthy Systems (InTrust 2014) (2014)Google Scholar
  29. 29.
    Rauti, S., Teuhola, J., Leppänen, V.: Diversifying SQL to prevent injection attacks. In: Proceedings of Trustcom/BigDataSE/ISPA, pp. 344–351 (2015)Google Scholar
  30. 30.
    Rodes, B.: Stack layout transformation: towards diversity for securing binary programs. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 1543–1546, June 2012Google Scholar
  31. 31.
    Uitto, J., Rauti, S., Mäkelä, J.-M., Leppänen, V.: Preventing malicious attacks by diversifying Linux shell commands. In: Proceedings of the 14th Symposium on Programming Languages and Software Tools (SPLST 2015), vol. 1525. CEUR Workshop Proceedings (2015)Google Scholar
  32. 32.
    Williams, D., Wei, H., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong, A.: Security through diversity: leveraging virtual machine technology. IEEE Secur. Priv. 7(1), 26–33 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sampsa Rauti
    • 1
    Email author
  • Samuel Lauren
    • 1
  • Joni Uitto
    • 1
  • Shohreh Hosseinzadeh
    • 1
  • Jukka Ruohonen
    • 1
  • Sami Hyrynsalmi
    • 1
  • Ville Leppänen
    • 1
  1. 1.University of TurkuTurkuFinland

Personalised recommendations