Advertisement

Construction of Capacities from Overlap Indexes

Chapter
  • 828 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 671)

Abstract

In this chapter, we show how the concepts of overlap function and overlap index can be used to define fuzzy measures which depend on the specific data of each considered problem.

Keywords

Overlap function Capacity Fuzzy measure 

Notes

Acknowledgements

The work has been supported by projects TIN2013-40765-P and TIN2015-66471-P of the Spanish Ministry of Science, by grant VEGA 1/0420/15 and by grant VEGA 1/0419/13.

References

  1. 1.
    A. Amo, J. Montero, E. Molina, Representation of consistent recursive rules. European Journal of Operational Research, 130, 29–53, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Benvenuti, R. Mesiar, Pseudo-additive measures and triangular-norm-based conditioning. Annals of Mathematics and Artificial Intelligence, 35, 63–69, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Benvenuti, D. Vivona, M. Divari, Aggregation operators and associated fuzzy measures. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9, 197–204, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H. Bustince, M. Pagola, R. Mesiar, E. Hüllermeier, F. Herrera, Grouping, Overlap, and Generalized Bientropic Functions for Fuzzy Modeling of Pairwise Comparisons. IEEE Transactions on Fuzzy Systems, 20(3), 405–415, 2012.CrossRefGoogle Scholar
  5. 5.
    H. Bustince, E. Barrenechea, M. Pagola, F. Soria, Weak fuzzy S-subsethood measures: Overlap index. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 14(5), 537–560, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Bustince, J. Montero, E. Barrenechea, M. Pagola, Semiautoduality in a restricted family of aggregation operators. Fuzzy Sets and Systems, 158, 1360–1377, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 1488–1499, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Bustince, D. Paternain, M. Pagola, P. Sussner, A. Kolesárová, R. Mesiar, Capacities and Overlap Indexes with an Application in Fuzzy Rule- Based Classification Systems, Fuzzy Sets and Systems, accepted for publication, in press.Google Scholar
  9. 9.
    T. Calvo, A. Kolesárová, M. Komorníková and R. Mesiar: Aggregation Operators: Properties, Classes and Construction Methods. In T. Calvo, G. Mayor and R. Mesiar (Eds.): Aggregation Operators. New Trends and Applications. Physica-Verlag, Heidelberg, pp. 3–104, 2002.CrossRefGoogle Scholar
  10. 10.
    G. Choquet, Theory of capacities. Ann. Inst. Fourier 5, 131–295, 1953-54.Google Scholar
  11. 11.
    V. Cutello, J. Montero, Recursive connective rules. International Journal of Intelligent Systems, 14, 3–20, 1999.CrossRefzbMATHGoogle Scholar
  12. 12.
    D. Dubois, W. Ostasiewicz, H. Prade, Fuzzy Sets: History and Basic Notions. In D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets. Kluwer, Boston, MA, pp. 21-124, 2000.CrossRefGoogle Scholar
  13. 13.
    S. Garcia, H. Bustince, E. Hüllermeier, R. Mesiar, N. Pal, A. Pradera, Overlap Indices: Construction of and Application to Interpolative Fuzzy Systems, IEEE Transactions on Fuzzy Systems 23, 1259–1273, 2015.Google Scholar
  14. 14.
    D. Gomez, J.T. Rodriguez, J. Montero, H. Bustince, E. Barrenechea, N-dimensional overlap functions, Fuzzy Sets and Systems 287, 57–75, 2016.Google Scholar
  15. 15.
    M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions. Cambridge University Press, Cambridge, 2009.CrossRefzbMATHGoogle Scholar
  16. 16.
    A. Jurio, H. Bustince, M. Pagola, A. Pradera, R.R. Yager, Some properties of overlap and grouping functions and their application to image thresholding. Fuzzy Sets and Systems, 229, 69–90, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Gómez, J. Montero, A discussion on aggregation operators. Kybernetika 40, 107–120, 2004.Google Scholar
  18. 18.
    G.J. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, NJ, 1988.zbMATHGoogle Scholar
  19. 19.
    R. Mesiar, A. Mesiarová-Zemánková, The Ordered Modular Averages. IEEE Transactions on Fuzzy Systems, 19, 42–50, 2011.CrossRefGoogle Scholar
  20. 20.
    E. Pap, Handbook of Measure Theory, Part I, PartII. Elsevier, Amsterdam, 2002.zbMATHGoogle Scholar
  21. 21.
    V. Torra, Y. Narukawa, M. Sugeno, Eds., Non-Additive Measures, Theory and Applications. Studies in Fuzziness and Soft Computing, 310, 2014.Google Scholar
  22. 22.
    L.A. Zadeh, Fuzzy sets. Information Control, 8, 338–353, 1965.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento of Automática y Computación and the Institute of Smart CitiesUniversidad Publica de NavarraNavarraSpain
  2. 2.Slovak University of TechnologyBratislavaSlovakia
  3. 3.Institute of Information Theory and AutomationAcademy of Sciences of the Czech RepublicPragueCzech Republic
  4. 4.Institute of Information Engineering, Automation and MathematicsSlovak University of TechnologyBratislavaSlovakia
  5. 5.Department of Statistics and Operations Research I, Faculty of MathematicsUniversidad Complutense de MadridMadridSpain

Personalised recommendations