Skip to main content

The Connes-Kreimer Hopf Algebra

  • Chapter
  • First Online:
A Combinatorial Perspective on Quantum Field Theory

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 15))

  • 1521 Accesses

Abstract

A coproduct takes an object and returns a sum of ways to break the object into two pieces. We get a combinatorial Hopf algebra if the product and coproduct are compatible in a specific way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A bridge is an edge which upon removal increases the number of connected components of a graph.

  2. 2.

    Personal communication with Spencer Bloch and Dirk Kreimer.

  3. 3.

    Some more details on the connection between Feynman rules coming from the universal property and the exponential map can be found in lecture notes of Erik Panzer http://people.math.sfu.ca/~kyeats/seminars/Panzer 0- 02.pdf; my understanding of the connection between the convolution property and the exponential map is based on personal communication with Jason Bell and Julian Rosen.

References

  1. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics. arXiv:1409.8356

  2. Schmitt, W.R.: Incidence Hopf algebras. J. Pure Appl. Algebra 96(3), 299–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogoliubov, N.N., Parasiuk, O.S.: On the multiplication of causal functions in the quantum theory of fields. Acta Math. 97, 227–266 (1957)

    Article  MathSciNet  Google Scholar 

  4. Zimmermann, W.: Convergence of Bogoliubovs method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ebrahimi-Fard, K., Kreimer, D.: Hopf algebra approach to Feynman diagram calculations. J. Phys. A 38, R285–R406 (2005). arXiv:hep-th/0510202

  6. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2(2), 303–334 (1998). arXiv:q-alg/9707029

  7. Kreimer, D.: On overlapping divergences. Commun. Math. Phys. 204(3), 669–689 (1999). arXiv:hep-th/9810022

  8. Aluffi, P., Marcolli, M.: Parametric Feynman integrals and determinant hypersurfaces. Adv. Theor. Math. Phys. 14(3), 911–964 (2010). arXiv:0901.2107

  9. van Baalen, G., Kreimer, D., Uminsky, D., Yeats, K.: The QED beta-function from global solutions to Dyson-Schwinger equations. Ann. Phys. 234(1), 205–219 (2008). arXiv:0805.0826

  10. Bellon, M.: An efficient method for the solution of Schwinger-Dyson equations for propagators. Lett. Math. Phys. 94(1), 77–86 (2010). arXiv:1005.0196

  11. Bergbauer, C., Kreimer, D.: Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology. IRMA Lect. Math. Theor. Phys. 10, 133–164 (2006). arXiv:hep-th/0506190

  12. Black, S., Crump, I., DeVos, M., Yeats, K.: Forbidden minors for graphs with no first obstruction to parametric feynman integration. Discrete Math. 338, 9–35 (2015). arXiv:1310.5788

  13. Bloch, S., Esnault, H., Kreimer, D.: On motives associated to graph polynomials. Commun. Math. Phys. 267, 181–225 (2006). arXiv:math/0510011v1 [math.AG]

  14. Bloch, S., Kreimer, D.: Feynman amplitudes and Landau singularities for 1-loop graphs. arXiv:1007.0338

  15. Broadhurst, D., Schnetz, O.: Algebraic geometry informs perturbative quantum field theory. In: PoS, vol. LL2014, p. 078 (2014). arXiv:1409.5570

  16. Brown, F.: On the periods of some Feynman integrals. arXiv:0910.0114

  17. Brown, F., Schnetz, O.: Modular forms in quantum field theory. Commun. Number Theor. Phys. 7(2), 293–325 (2013). arXiv:1304.5342

  18. Brown, F., Schnetz, O.: Single-valued multiple polylogarithms and a proof of the zigzag conjecture. J. Number Theory 148, 478–506 (2015). arXiv:1208.1890

  19. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998). arXiv:hep-th/9808042

  20. Foissy, L.: Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations. Adv. Math. 218(1), 136–162 (2007). arXiv:0707.1204

  21. Ebrahimi-Fard, K., Gracia-Bondia, J.M., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. 276(2), 519–549 (2007). arXiv:hep-th/0609035

  22. Kreimer, D.: The residues of quantum field theory-numbers we should know. In: Consani, C., Marcolli, M. (eds.) Noncommutative Geometry and Number Theory, pp. 187–204. Vieweg (2006). arXiv:hep-th/0404090

  23. Kreimer, D.: A remark on quantum gravity. Ann. Phys. 323, 49–60 (2008). arXiv:0705.3897

  24. Kreimer, D., Sars, M., van Suijlekom, W.: Quantization of gauge fields, graph polynomials and graph cohomology. arXiv:1208.6477

  25. Kremnizer, K., Szczesny, M.: Feynman graphs, rooted trees, and Ringel-Hall algebras. Commun. Math. Phys. 289(2), 561–577 (2009). arXiv:0806.1179

  26. Marie, N., Yeats, K.: A chord diagram expansion coming from some Dyson-Schwinger equations. Commun. Number Theory Phys. 7(2), 251–291 (2013). arXiv:1210.5457

  27. Schnetz, O.: Quantum periods: a census of \(\phi ^4\)-transcendentals. Commun. Number Theory Phys. 4(1), 1–48 (2010). arXiv:0801.2856

  28. van Suijlekom, W.D.: Renormalization of gauge fields: a Hopf algebra approach. Commun. Math. Phys. 276, 773–798 (2007). arXiv:0610137

  29. Yeats, K.: A few \(c_2\) invariants of circulant graphs. Commun. Number Theor. Phys. 10(1), 63–86 (2016). arXiv:1507.06974

  30. Panzer, E.: Hopf-algebraic renormalization of Kreimer’s toy model. Master’s thesis, Humboldt-Universität zu Berlin (2011)

    Google Scholar 

  31. Ebrahimi-Fard, K., Guo, L., Kreimer, D.: Integrable renormalization ii: the general case. Ann. Henri Poincare 6, 369–395 (2005). arXiv:hep-th/0403118v1

  32. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (1999). arXiv:hep-th/9912092

  33. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II: the beta-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215–241 (2001). arXiv:hep-th/0003188

  34. Kempf, A., Jackson, D.M., Morales, A.H.: New Dirac delta function based methods with applications to perturbative expansions in quantum field theory. J. Physi. A Math. Theor. 47(41), 415204 (2014). arXiv:1404.0747

  35. Kempf, A., Jackson, D.M., Morales, A.H.: How to (path-) integrate by differentiating. J. Phys. Conf. Ser. 626, 012,015 (2015). arXiv:1507.04348

  36. Aluffi, P., Marcolli, M.: Algebro-geometric Feynman rules. Int. J. Geom. Methods Mod. Phys. 8, 203–237 (2011). arXiv:0811.2514

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Yeats .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yeats, K. (2017). The Connes-Kreimer Hopf Algebra. In: A Combinatorial Perspective on Quantum Field Theory. SpringerBriefs in Mathematical Physics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-47551-6_4

Download citation

Publish with us

Policies and ethics