Tracking Areas Planning with Cooperative Game in Heterogeneous and Small Cell Networks

  • Lei Ning
  • Zhenyong WangEmail author
  • Qing Guo
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 174)


Increasing demands of data transmissions are promoting the acceleration of peaking rate per terminal especially in hot-spots. Numerous irregular deployments of small cells require efficient TA planning method in heterogeneous cellular networks. Macrocells preferred access is not a fundamental solution for TA planning, result from reducing the offloading ability of small cells. In this paper, a novel TA planning algorithm based on cooperative games is proposed by detecting similar communities. Simulation results show that it can reduce the signalling overhead while maintaining the utilization proportion of femtocells.


Heterogeneous and small cell networks Location management Tracking areas planning Cooperative game 



This work has been sponsored by National Natural Science Foundation of China (No. 61101125 and 61571316), and the China Scholarship Council (No. 201406120100). Meanwhile, the authors would like to thank anonymous for improving the quality of this paper.


  1. 1.
    Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of wi-fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Mag. 53(3), 158–164 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhang, H., Jiang, C., Beaulieu, N.C., Chu, X., Wang, X., Quek, T.Q.: Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans. Wireless Commun. 14(6), 3481–3493 (2015)CrossRefGoogle Scholar
  3. 3.
    Ning, L., Wang, Z., Guo, Q., Zhang, H.: Dynamic PCI assignment in two-tier networks based on cell activity prediction. Electronics Letters, efirst (2016). doi: 10.1049/el.2016.0048
  4. 4.
    Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., Reed, M.C.: Femtocells: Past, present, and future. IEEE J. Selected Areas Commun. 30(3), 497–508 (2012)CrossRefGoogle Scholar
  5. 5.
    Andrews, J.G.: Seven ways that hetnets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)CrossRefGoogle Scholar
  6. 6.
    Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.: What will 5G be? IEEE J. Selected Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  7. 7.
    Bangerter, B., Talwar, S., Arefi, R., Stewart, K.: Networks and devices for the 5G Era. IEEE Commun. Mag. 52(2), 90–96 (2014)CrossRefGoogle Scholar
  8. 8.
    Fortes, S., Aguilar-García, A., Barco, R., Barba, F., Fernández-luque, J., Fernández-Durán, A.: Management architecture for location-aware self-organizing lte/lte-a small cell networks. IEEE Commun. Mag. 53(1), 294–302 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Jiang, C., Rose Qingyang, H., Qian, Y.: Self-organization in disaster resilient heterogeneous small cell networks. IEEE Network preprint arXiv:1505.03209 (2015)
  10. 10.
    Zhang, H., Jiang, C., Cheng, J.: Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Commun. 22(3), 92–99 (2015)CrossRefGoogle Scholar
  11. 11.
    Ferragut, J., Mangues-Bafalluy, J.: A self-organized tracking area list mechanism for large-scale networks of femtocells. In: IEEE International Conference on Communications (ICC), pp. 5129–5134. IEEE (2012)Google Scholar
  12. 12.
    Chatzikokolakis, K., Kaloxylos, A., Spapis, P., Alonistioti, N., Zhou, C., Eichinger, J., Bulakci, O.: A survey of location management mechanisms and an evaluation of their applicability for 5G cellular networks. Recent Adv. Commun. Networking Technol. 3(2), 106–116 (2014)CrossRefGoogle Scholar
  13. 13.
    Huai-Lei, F., Lin, P., Lin, Y.-B.: Reducing signaling overhead for femtocell/macrocell networks. IEEE Trans. Mobile Comput. 12(8), 1587–1597 (2013)CrossRefGoogle Scholar
  14. 14.
    Toril, M., Luna-Ramírez, S., Wille, V.: Automatic replanning of tracking areas in cellular networks. IEEE Trans. Vehicular Technol. 62(5), 2005–2013 (2013)CrossRefGoogle Scholar
  15. 15.
    Yifan, Y., Daqing, G.: The cost efficient location management in the lte picocell/macrocell network. IEEE Commun. Lett. 17(5), 904–907 (2013)CrossRefGoogle Scholar
  16. 16.
    Han, Z.: Game theory in wireless and communication networks: theory, models, and applications. Cambridge University Press (2012)Google Scholar
  17. 17.
    Zhou, L., Cheng, C., Lü, K., Chen, H.: Using coalitional games to detect communities in social networks. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 326–331. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38562-9_33 CrossRefGoogle Scholar
  18. 18.
    Chu, X., López-Pérez, D., Yang, Y., Gunnarsson, F.: Heterogeneous Cellular Networks: Theory Simulation and Deployment. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  19. 19.
    ElSawy, H., Hossain, E., Haenggi, M.: Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Commun. Surv. Tutorials 15(3), 996–1019 (2013)CrossRefGoogle Scholar
  20. 20.
    Ning, L., Wang, Z., Guo, Q.: Preferred route indoor mobility model for heterogeneous networks. IEEE Commun. Lett. 18(5), 821–824 (2014)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  1. 1.Communication Research CenterHarbin Institute of TechnologyHarbinChina

Personalised recommendations