Skip to main content

Bio-inspired Underwater Active and Passive Sensing

  • Chapter
  • First Online:
  • 961 Accesses

Abstract

Animals , for survival rely heavily on their sensing capabilities. May it be catching a prey, escaping from a predator, finding partners for reproduction or being aware of surrounding environment, senses have a very important role to play. It would not be an exaggeration to say that for a species to sustain itself and thrive through the evolutionary process, ‘sensing’ is probably the most decisive factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whitlow A (1993) The sonar of dolphins. Springer, New York

    Book  Google Scholar 

  2. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  3. Paull L, Saeedi S, Seto M, Li H (2014) AUV navigation and localization: a review. IEEE J Ocean Eng 39(1):131–149. doi:10.1109/JOE.2013.2278891

    Article  Google Scholar 

  4. D’Amico A, Pittenger R (2009) A brief history of active sonar. Aquat Mamm 35(4):426–434. doi:10.1578/AM.35.4.2009.426

    Article  Google Scholar 

  5. Schevill WE, McBride AF (1956) Evidence for echolocation by cetaceans. Deep Sea Res 3(2):153–154

    Article  Google Scholar 

  6. Klemas VV (2013) Remote sensing and navigation in the animal world: an overview. Sensor Rev 33(1):3–13. doi:10.1108/02602281311294298

    Article  Google Scholar 

  7. Leighton TG (2004) From seas to surgeries, from babbling brooks to baby scans: the acoustics of gas bubbles in liquids. Int J Mod Phys B 18(25):3267–3314. doi:10.1142/S0217979204026494

    Article  Google Scholar 

  8. Leighton TG, Chua GH, White PR (2012) Do dolphins benefit from nonlinear mathematics when processing their sonar returns? Proc R Soc A 468(2147):3517–3532. doi:10.1098/rspa.2012.0247

    Article  MathSciNet  Google Scholar 

  9. Kramer B (1996) Electroreception and communication in fishes, vol 42. Progress in zoology. Gustav Fischer, Stuttgart

    Google Scholar 

  10. von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167(3):413–421. doi:10.1007/BF00192576

    Article  Google Scholar 

  11. Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35(2):451–486

    Google Scholar 

  12. Neveln ID, Bai Y, Snyder JB, Solberg JR, Curet OM, Lynch KM, MacIver MA (2013) Biomimetic and bio-inspired robotics in electric fish research. J Exp Biol 216(13):2501–2514. doi:10.1242/jeb.082743

    Article  Google Scholar 

  13. Solberg JR, Lynch KM, MacIver MA (2008) Active electrolocation for underwater target localization. Int J Robot Res 27(5):529–548. doi:10.1177/0278364908090538

    Article  Google Scholar 

  14. Bai Y, Snyder JB, Peshkin M, MacIver MA (2015) Finding and identifying simple objects underwater with active electrosense. Int J Robot Res 34(10):1255–1277. doi:10.1177/0278364915569813

    Article  Google Scholar 

  15. Nelson ME, MacIver MA (2006) Sensory acquisition in active sensing systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(6):573–586. doi:10.1007/s00359-006-0099-4

    Article  Google Scholar 

  16. Westby GWM (1988) The ecology, discharge diversity and predatory behaviour of gymnotiforme electric fish in the coastal streams of French Guiana. Behav Ecol Sociobiol 22(5):341–354. doi:10.1007/BF00295103

    Google Scholar 

  17. Schrope M (2002) Whale deaths caused by US Navy’s sonar. Nature 415(6868):106

    Article  Google Scholar 

  18. Snyder JB, Nelson ME, Burdick JW, MacIver MA (2007) Omnidirectional sensory and motor volumes in electric fish. PLoS Biol 5(11):2671–2683. doi:10.1371/journal.pbio.0050301

    Article  Google Scholar 

  19. Boyer F, Lebastard V, Chevallereau C, Mintchev S, Stefanini C (2015) Underwater navigation based on passive electric sense: new perspectives for underwater docking. Int J Robot Res 34(9):1228–1250. doi:10.1177/0278364915572071

    Article  Google Scholar 

  20. Wang N, Kanhere E, Miao J, Triantafyllou MS (2016) Miniaturized chemical sensor with bio-inspired micropillar working electrode array for lead detection. Sens Actuators B Chem 233:249–256. doi:10.1016/j.snb.2016.04.048

    Article  Google Scholar 

  21. Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Envorin Biol Fish 62(1–3):87–96

    Article  Google Scholar 

  22. Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213(15):2665–2672. doi:10.1242/jeb.043216

    Article  Google Scholar 

  23. Soares D (2002) An ancient sensory organ in crocodilians. Nature 417(6886):241–242

    Article  Google Scholar 

  24. Dijkgraaf S (1989) A short personal review of the history of lateral line research. In: Coombs S, Görner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 7–14. doi:10.1007/978-1-4612-3560-6_2

  25. Montgomery J, Coombs S, Halstead M (1995) Biology of the mechanosensory lateral line in fishes. Rev Fish Biol Fisheries 5(4):399–416

    Article  Google Scholar 

  26. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389(6654):960–963

    Article  Google Scholar 

  27. Peleshanko S, Julian MD, Ornatska M, McConney ME, LeMieux MC, Chen N, Tucker C, Yang Y, Liu C, Humphrey JAC, Tsukruk VV (2007) Hydrogel-encapsulated microfabricated haircells mimicking fish cupula neuromast. Adv Mater 19(19):2903–2909. doi:10.1002/adma.200701141

    Article  Google Scholar 

  28. Kottapalli AGP, Asadnia M, Miao JM, Barbastathis G, Triantafyllou MS (2012) A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater Struct 21(11):115030. doi:10.1088/0964-1726/21/11/115030

    Article  Google Scholar 

  29. Kottapalli AGP, Asadnia M, Miao JM, Triantafyllou MS (2014) Touch at a distance sensing: lateral-line inspired MEMS flow sensors. Bioinspir Biomim 9(4):046011

    Article  Google Scholar 

  30. Asadnia M, Kottapalli AGP, Miao JM, Warkiani ME, Triantafyllou MS (2015) Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J R Soc Interface 12(111). doi:10.1098/rsif.2015.0322

  31. Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 103(50):18891–18895

    Article  Google Scholar 

  32. Nguyen N, Jones DL, Yang Y, Liu C (2011) Flow vision for autonomous underwater vehicles via an artificial lateral line. EURASIP J Adv Signal Process 2011:1–11. doi:10.1155/2011/806406

    Article  Google Scholar 

  33. Pandya S, Yang Y, Jones DL, Engel J, Liu C (2006) Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Adv Signal Process 2006:1–9. doi:10.1155/asp/2006/76593

    Article  Google Scholar 

  34. Lagor FD, DeVries LD, Waychoff KM, Paley DA (2013) Bio-inspired flow sensing and control: autonomous underwater navigation using distributed pressure measurements. Paper presented at the proceedings of 18th international symposium on Unmanned Untethered Submersible Technology, Portsmouth, NH

    Google Scholar 

  35. Asadnia M, Kottapalli AGP, Haghighi R, Cloitre A, Alvarado PV, Miao JM, Triantafyllou MS (2015) MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspir Biomim 10(3):036008. doi:10.1088/1748-3190/10/3/036008

    Article  Google Scholar 

  36. Chen J, Liu C (2003) Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. J Microelectromech Syst 12(6):979–988. doi:10.1109/JMEMS.2003.820261

    Article  Google Scholar 

  37. Chen N, Tucker C, Engel JM, Yang Y, Pandya S, Liu C (2007) Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity. J Microelectromech Syst 16(5):999–1014. doi:10.1109/JMEMS.2007.902436

    Article  Google Scholar 

  38. Anderson KD, Lu D, McConney ME, Han T, Reneker DH, Tsukruk VV Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer. doi:10.1016/j.polymer.2008.09.039

  39. Kottapalli AGP, Bora M, Asadnia M, Miao J, Venkatraman SS, Triantafyllou M (2016) Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing. Sci Rep 6. doi:10.1038/srep19336

  40. Salumäe T, Kruusmaa M (2013) Flow-relative control of an underwater robot. Proc R Soc A 469(2153). doi:10.1098/rspa.2012.0671

  41. Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements [6]. Nature 394(6690):235–236. doi:10.1038/28303

    Article  Google Scholar 

  42. Beem H, Hildner M, Triantafyllou M (2013) Calibration and validation of a harbor seal whisker-inspired flow sensor. Smart Mater Struct 22(014012)

    Google Scholar 

  43. Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293(5527):102–104. doi:10.1126/science.1060514

    Article  Google Scholar 

  44. Beem HR, Triantafyllou MS (2015) Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors. J Fluid Mech 783:306–322. doi:10.1017/jfm.2015.513

    Article  MathSciNet  Google Scholar 

  45. Leitch DB, Catania KC (2012) Structure, innervation and response properties of integumentary sensory organs in crocodilians. J Exp Biol 215(Pt 23):4217–4230. doi:10.1242/jeb.076836

    Article  Google Scholar 

  46. Di-Poi N, Milinkovitch MC (2013) Crocodylians evolved scattered multi-sensory micro-organs. EvoDevo 4(1):19. doi:10.1186/2041-9139-4-19

    Google Scholar 

  47. Grap NJ, Monzel AS, Kohl T, Bleckmann H (2015) Crocodylus niloticus (Crocodilia) is highly sensitive to water surface waves. Zool 118(5):320–324. doi:10.1016/j.zool.2015.03.004

    Article  Google Scholar 

  48. Gardener EP, Martin JH (2000) Coding the sensory information. In: Principles of neural science. McGraw-Hill, New York, pp 411–421

    Google Scholar 

  49. Coombs S, Braun CB, Donovan B (2001) The orienting response of lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204(2):337–348

    Google Scholar 

  50. Kanhere E, Wang N, Asadnia M, Kottapalli AGP, Miao JM (2015) Crocodile inspired Dome Pressure sensor for hydrodynamic sensing. In: 2015 Transducers—2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), 21–25 June 2015, pp 1199–1202. doi:10.1109/TRANSDUCERS.2015.7181144

  51. Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Neurobiology: hydrodynamic stimuli and the fish lateral line. Nature 408(6808):51–52

    Article  Google Scholar 

  52. Loewenstein WR, Skalak R (1966) Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol 182(2):346–378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Kanhere, E. (2017). Bio-inspired Underwater Active and Passive Sensing. In: Biomimetic Microsensors Inspired by Marine Life. Springer, Cham. https://doi.org/10.1007/978-3-319-47500-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47500-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47499-1

  • Online ISBN: 978-3-319-47500-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics