Skip to main content

Platelet Morphology and Ultrastructure

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Platelets are key players in hemostasis, the process that is essential in the prevention of blood loss in response to injury of a blood vessel. When platelets encounter breaches in the vascular wall, they rapidly adhere to the site of injury and aggregate to form a platelet plug. Subsequently coagulation will be initiated resulting in a fibrin network that reinforces the plug. Failure to form an adequate plug leads to a bleeding tendency. On the other hand, excessive platelet reactivity leads to an increased risk of vascular occlusion and thrombosis. In order to better understand how platelets function, it is essential to have insight into their overall morphology and (ultra)structure. This chapter will contribute to this and present our current view of the platelet structure and physiology in health and disease and the recent techniques available to visualize this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts P, Bolhuis P, Sakariassen K et al (1983) Red blood cell size is important for adherence of blood platelets to artery subendothelium. Blood 62:214–217

    CAS  PubMed  Google Scholar 

  • Akkerman JW, Holmsen H (1981) Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion. Blood 57:956–966

    CAS  PubMed  Google Scholar 

  • Al Hawas R, Ren Q, Ye S et al (2012) Munc18b/STXBP2 is required for platelet secretion. Blood 120:2493–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albers CA, Cvejic A, Favier R et al (2011) Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 43:735–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Behnke O (1967a) Electron microscopic observations on the membrane systems of the rat blood platelet. Anat Rec 158:121–137

    Article  CAS  PubMed  Google Scholar 

  • Behnke O (1967b) Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J Cell Biol 34:697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behnke O (1968a) Electron microscopical observations on the surface coating of human blood platelets. J Ultrastruct Res 24:51–69

    Article  CAS  PubMed  Google Scholar 

  • Behnke O (1968b) An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res 24:412–433

    Article  CAS  PubMed  Google Scholar 

  • Behnke O (1969) An electron microscope study of the rat megacaryocyte: II. Some aspects of platelet release and microtubules. J Ultrastruct Res 26:111–129

    Article  CAS  PubMed  Google Scholar 

  • Behnke O (1970) The morphology of blood platelet membrane systems. Ser Haematol 3:3–16

    CAS  PubMed  Google Scholar 

  • Behnke O (1992) Degrading and non-degrading pathways in fluid-phase (non-adsorptive) endocytosis in human blood platelets. J Submicrosc Cytol Pathol 24:169–178

    CAS  PubMed  Google Scholar 

  • Behnke O, Zelander T (1967) Filamentous substructure of microtubules of the marginal bundle of mammalian blood platelets. J Ultrastruct Res 19:147–165

    Article  CAS  PubMed  Google Scholar 

  • Bentfeld-Barker ME, Bainton DF (1982) Identification of primary lysosomes in human megakaryocytes and platelets. Blood 59:472–481

    CAS  PubMed  Google Scholar 

  • Beumer S, Heijnen HF, IJsseldijk MJ et al (1995) Platelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood 86:3452–3460

    CAS  PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottega R, Pecci A, De Candia E et al (2013) Correlation between platelet phenotype and NBEAL2 genotype in patients with congenital thrombocytopenia and α-granule deficiency. Haematologica 98:868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton-Gorius J, Guichard J (1972) Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes. Am J Pathol 66:277–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee M, Huang Z, Zhang W et al (2011) Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 117:3907–3911

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Detwiler TC, Essex DW (1995) Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol 90:425–431

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Furie BC, Coughlin SR et al (2008) A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J Clin Invest 118:1123–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho J, Kennedy DR, Lin L et al (2012) Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of β3 integrins. Blood 120:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer EM, Meyer D, le Menn R et al (1985) Eccentric localization of von Willebrand factor in an internal structure of platelet alpha-granule resembling that of Weibel-Palade bodies. Blood 66:710–713

    CAS  PubMed  Google Scholar 

  • Cramer EM, Breton-Gorius J, Beesley JE et al (1988) Ultrastructural demonstration of tubular inclusions coinciding with von Willebrand factor in pig megakaryocytes. Blood 71:1533–1538

    CAS  PubMed  Google Scholar 

  • Cranmer SL, Ashworth KJ, Yao Y et al (2011) High shear-dependent loss of membrane integrity and defective platelet adhesion following disruption of the GPIbalpha-filamin interaction. Blood 117:2718–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Denzer K, Kleijmeer MJ, Heijnen HF et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374

    CAS  PubMed  Google Scholar 

  • Deuel TF, Senior RM, Chang D et al (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci U S A 78:4584–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diagouraga B, Grichine A, Fertin A et al (2014) Motor-driven marginal band coiling promotes cell shape change during platelet activation. J Cell Biol 204:177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docampo R, de Souza W, Miranda K et al (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dopheide SM, Maxwell MJ, Jackson SP (2002) Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood 99:159–167

    Article  CAS  PubMed  Google Scholar 

  • Eckly A, Heijnen HF, Pertuy F et al (2014) Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood 123:921–930

    Article  CAS  PubMed  Google Scholar 

  • Escola JM, Kleijmeer MJ, Stoorvogel W et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    Article  CAS  PubMed  Google Scholar 

  • Escolar G, Leistikow E, White JG (1989) The fate of the open canalicular system in surface and suspension-activated platelets. Blood 74:1983–1988

    CAS  PubMed  Google Scholar 

  • Feng W, Chang C, Luo D et al (2014) Dissection of autophagy in human platelets. Autophagy 10:642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaumenhaft R (2003) Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Flaumenhaft R, Dilks JR, Rozenvayn N et al (2005) The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood 105:3879–3887

    Article  CAS  PubMed  Google Scholar 

  • Fox JE (1985) Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem 260:11970–11977

    CAS  PubMed  Google Scholar 

  • Fox JE, Boyles JK, Berndt MC et al (1988) Identification of a membrane skeleton in platelets. J Cell Biol 106:1525–1538

    Article  CAS  PubMed  Google Scholar 

  • Franks ZG, Campbell RA, Weyrich AS et al (2010) Platelet–leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke. Ann N Y Acad Sci 1207:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furie B, Flaumenhaft R (2014) Thiol isomerases in thrombus formation. Circ Res 114:1162–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Souza LF, Oliveira MF (2014) Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol 50:156–160

    Article  CAS  PubMed  Google Scholar 

  • Ge S, White JG, Haynes CL (2012) Cytoskeletal F-actin, not the circumferential coil of microtubules, regulates platelet dense-body granule secretion. Platelets 23:259–263

    Article  CAS  PubMed  Google Scholar 

  • Geuze JJ, Slot JW, Tokuyasu KT (1979) Immunocytochemical localization of amylase and chymotrypsinogen in the exocrine pancreatic cell with special attention to the Golgi complex. J Cell Biol 82:697–707

    Article  CAS  PubMed  Google Scholar 

  • Gunay-Aygun M, Falik-Zaccai TC, Vilboux T et al (2011) NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet [alpha]-granules. Nat Genet 43:732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Nurden A, Combrié R et al (2003) Redistribution of glycoprotein Ib within platelets in response to protease-activated receptors 1 and 4: roles of cytoskeleton and calcium. J Thromb Haemost 1:2206–2215

    Article  CAS  PubMed  Google Scholar 

  • Harrison P, Savidge GF, Cramer EM (1990) The origin and physiological relevance of alpha-granule adhesive proteins. Br J Haematol 74:125–130

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH (1992) Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 118:1421–1442

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH, DeSisto M (1991) The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 112:407–425

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH, Barkalow K, Azim A et al (1999) The elegant platelet: signals controlling actin assembly. Thromb Haemost 82:392–398

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Sasaki H, Togo M et al (1994) Roles of myosin light-chain kinase in platelet shape change and aggregation. Biochim Biophys Acta 1223:163–169

    Article  CAS  PubMed  Google Scholar 

  • Heijnen HF, Oorschot V, Sixma JJ et al (1997) Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT-3 from alpha-granules to the cell surface. J Cell Biol 138:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijnen HF, Debili N, Vainchencker W et al (1998) Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood 91:2313–2325

    CAS  PubMed  Google Scholar 

  • Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  • Heijnen HF, Van Lier M, Waaijenborg S et al (2003) Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J Thromb Haemost 1:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Holmsen H, Day HJ (1968) Thrombin-induced platelet release reaction and platelet lysosomes. Nature 219:760–761

    Article  CAS  PubMed  Google Scholar 

  • Hols H, Sixma JJ, Leunissen-Bijvelt J et al (1985) Freeze-fracture studies of human blood platelets activated by thrombin using rapid freezing. Thromb Haemost 54:574–578

    CAS  PubMed  Google Scholar 

  • Hourdille P, Heilmann E, Combrie R et al (1990) Thrombin induces a rapid redistribution of glycoprotein Ib-IX complexes within the membrane systems of activated human platelets. Blood 76:1503–1513

    CAS  PubMed  Google Scholar 

  • Huizing M, Helip-Wooley A, Westbroek W et al (2008) Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 9:359–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israels SJ, Gerrard JM, Jacques YV et al (1992) Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140). Blood 80:143–152

    CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Lecine P, Shivdasani RA et al (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147:1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiano JE Jr, Bergmeier W, Tiwari S et al (2003) Mechanisms and implications of platelet discoid shape. Blood 101:4789–4796

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Patel-Hett S, Hartwig JH (2007) Mechanics of proplatelet elaboration. J Thromb Haemost 5(Suppl 1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahr WH, Hinckley J, Li L et al (2011) Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 43:738–740

    Article  CAS  PubMed  Google Scholar 

  • Kamykowski J, Carlton P, Sehgal S et al (2011) Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood 118:1370–1373

    Article  CAS  PubMed  Google Scholar 

  • Klement GL, Yip TT, Cassiola F et al (2009) Platelets actively sequester angiogenesis regulators. Blood 113:2835–2842

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Nesbitt WS, Dopheide S et al (2004) Techniques to examine platelet adhesive interactions under flow. Methods Mol Biol 272:165–186

    CAS  PubMed  Google Scholar 

  • Labelle M, Begum S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 111:E3053–E3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JC, Hantgan RR, Stevenson SC et al (1990) Fibrinogen and glycoprotein IIb/IIIa localization during platelet adhesion. Localization to the granulomere and at sites of platelet interaction. Am J Pathol 136:239–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann S, Tolley ND, Dixon DA et al (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154:485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JJ, Salido GM, Gómez-Arteta E et al (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291

    Article  CAS  PubMed  Google Scholar 

  • Maxwell MJ, Dopheide SM, Turner SJ et al (2006) Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol 26:663–669

    Article  CAS  PubMed  Google Scholar 

  • Maynard DM, Heijnen HF, Horne MK et al (2007) Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5:1945–1955

    Article  CAS  PubMed  Google Scholar 

  • Meng R, Wang Y, Yao Y et al (2012) SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models. Blood 120:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzelaar MJ, Wijngaard PL, Peters PJ et al (1991) CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem 266:3239–3245

    CAS  PubMed  Google Scholar 

  • Monteferrario D, Bolar NA, Marneth AE et al (2014) A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 370:245–253

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern E (1980) Ultracytochemistry of human blood platelets. Prog Histochem Cytochem 12:1–82

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern E (1997) Human platelet morphology/ultrastructure. Handb Exp Pharmacol 126:27–60

    Article  Google Scholar 

  • Morgenstern E, Korell U, Richter J (1984) Platelets and fibrin strands during clot retraction. Thromb Res 33:617–623

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern E, Neumann K, Patscheke H (1987) The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 43:273–282

    CAS  PubMed  Google Scholar 

  • Morgenstern E, Ruf A, Patscheke H (1990) Ultrastructure of the interaction between human platelets and polymerizing fibrin within the first minutes of clot formation. Blood Coagul Fibrinolysis 1:543–546

    Article  CAS  PubMed  Google Scholar 

  • Mountford JK, Petitjean C, Putra HW et al (2015) The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nat Commun 6:6535

    Article  CAS  PubMed  Google Scholar 

  • Mourik MJ, Faas FG, Zimmermann H et al (2015) Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus. Blood 125:3509–3516

    Article  CAS  PubMed  Google Scholar 

  • Muallem S, Kwiatkowska K, Xu X et al (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 128:589–598

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt WS, Giuliano S, Kulkarni S et al (2003) Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol 160:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt WS, Tovar-Lopez FJ, Westein E et al (2013) A multimode-TIRFM and microfluidic technique to examine platelet adhesion dynamics. In: Amanda. S. Coutts (ed) Adhesion protein protocols. Humana Press, USA, pp 39–58

    Google Scholar 

  • Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148–155

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic beta-cell web: its possible role in Insulin secretion. Science 175:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Ouseph MM, Huang Y, Banerjee M et al (2015) Autophagy is induced upon platelet activation and is essential for hemostasis and thrombosis. Blood 126:1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter RG, Ginsberg MH (1984) Centripetal myosin redistribution in thrombin-stimulated platelets: relationship to platelet factor 4 secretion. Exp Cell Res 155:198–212

    Article  CAS  PubMed  Google Scholar 

  • Pasquet J-M, Toti F, Nurden AT et al (1996) Procoagulant activity and active calpain in platelet-derived microparticles. Thromb Res 82:509–522

    Article  CAS  PubMed  Google Scholar 

  • Patel-Hett S, Richardson JL, Schulze H et al (2008) Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood 111:4605–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel-Hett S, Wang H, Begonja AJ et al (2011) The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood 118:1641–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters CG, Michelson AD, Flaumenhaft R (2012) Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood 120:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulter NS, Pollitt AY, Davies A et al (2015) Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 6:7254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reininger AJ, Heijnen HF, Schumann H et al (2006) Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 107:3537–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JG, Da Prada M (1977) Uranaffin reaction: a new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J Histochem Cytochem 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Ruiz FA, Lea CR, Oldfield E et al (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    Article  CAS  PubMed  Google Scholar 

  • Sadoul K (2014) New explanations for old observations: marginal band coiling during platelet activation. J Thromb Haemost 13:333–346

    Article  Google Scholar 

  • Sakariassen KS, de Groot PG, Houdijk WP et al (1983) A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J Lab Clin Med 102:522–535

    CAS  PubMed  Google Scholar 

  • Sander HJ, Slot JW, Bouma BN et al (1983) Immunocytochemical localization of fibrinogen, platelet factor 4, and beta thromboglobulin in thin frozen sections of human blood platelets. J Clin Invest 72:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtner H, Calaminus SD, Sinclair A et al (2013) Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 121:2542–2552

    Article  CAS  PubMed  Google Scholar 

  • Schulman S, Bendapudi P, Sharda A et al (2016) Extracellular thiol isomerases and their role in thrombus formation. Antioxid Redox Signal 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwer HD, Lecine P, Tiwari S et al (2001) A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 11:579–586

    Article  CAS  PubMed  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM et al (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets. J Exp Med 203:2433–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sixma JJ, de Groot PG (1994) Regulation of platelet adhesion to the vessel wall. Ann N Y Acad Sci 714:190–199

    Article  CAS  PubMed  Google Scholar 

  • Sixma J, van den Berg A, Hasilik A et al (1985) Immuno-electron microscopical demonstration of lysosomes in human blood platelets and megakaryocytes using anti-cathepsin D. Blood 65:1287–1291

    CAS  PubMed  Google Scholar 

  • Sixma JJ, Nievelstein PF, Zwaginga JJ et al (1987) Adhesion of blood platelets to the extracellular matrix of cultured human endothelial cells. Ann N Y Acad Sci 516:39–51

    Article  CAS  PubMed  Google Scholar 

  • Sixma JJ, Hindriks G, Van Breugel H et al (1991) Vessel wall proteins adhesive for platelets. J Biomater Sci Polym Ed 3:17–26

    Article  CAS  PubMed  Google Scholar 

  • Tabak HF, Murk JL, Braakman I et al (2003) Peroxisomes start their life in the endoplasmic reticulum. Traffic 4:512–518

    Article  CAS  PubMed  Google Scholar 

  • Tersteeg C, Heijnen HF, Eckly A et al (2014) FLow-Induced PRotrusions (FLIPRs): A platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ Res 114:780–791

    Article  CAS  PubMed  Google Scholar 

  • Thon JN, Italiano JE (2010) Platelet formation. Semin Hematol 47:220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thon JN, Peters CG, Machlus KR et al (2012) T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 198:561–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifaró JM, Gasman S, Gutiérrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol (Oxf) 192:165–172

    Article  CAS  Google Scholar 

  • Urban D, Li L, Christensen H et al (2012) The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis. Blood 120:5032–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Nispen tot Pannerden H, de Haas F, Geerts W et al (2010) The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood 116:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • van Zanten GH, Heijnen HF, Wu Y et al (1998) A fifty percent reduction of platelet surface glycoprotein Ib does not affect platelet adhesion under flow conditions. Blood 91:2353–2359

    PubMed  Google Scholar 

  • Wanders RJ, Kos M, Roest B et al (1984) Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome. Biochem Biophys Res Commun 123:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Stone RL, Kaelber JT et al (2015) Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proc Natl Acad Sci U S A 112:14266–14271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencel-Drake JD, Painter RG, Zimmerman TS et al (1985) Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin, and von Willebrand factor in frozen thin section. Blood 65:929–938

    CAS  PubMed  Google Scholar 

  • Wencel-Drake JD, Dahlback B, White JG et al (1986) Ultrastructural localization of coagulation factor V in human platelets. Blood 68:244–249

    CAS  PubMed  Google Scholar 

  • Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25:489–495

    Article  CAS  PubMed  Google Scholar 

  • White JG (1968) The substructure of human platelet microtubules. Blood 32:638–648

    CAS  PubMed  Google Scholar 

  • White JG (1969) The dense bodies of human platelets: inherent electron opacity of the serotonin storage particles. Blood 33:598–606

    CAS  PubMed  Google Scholar 

  • White JG (1972) Interaction of membrane systems in blood platelets. Am J Pathol 66:295–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG (1982) Influence of taxol on the response of platelets to chilling. Am J Pathol 108:184–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG (1987) The secretory pathway of bovine platelets. Blood 69:878–885

    CAS  PubMed  Google Scholar 

  • White JG, Burris SM (1984) Morphometry of platelet internal contraction. Am J Pathol 115:412–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Clawson CC (1980) The surface-connected canalicular system of blood platelets—a fenestrated membrane system. Am J Pathol 101:353–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Krumwiede M (2007) Some contributions of electron microscopy to knowledge of human platelets. Thromb Haemost 98:69–72

    CAS  PubMed  Google Scholar 

  • White JG, Rao GH (1998) Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 152:597–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Burris SM, Tukey D et al (1984) Micropipette aspiration of human platelets: influence of microtubules and actin filaments on deformability. Blood 64:210–214

    CAS  PubMed  Google Scholar 

  • White JG, Krumwiede MD, Cocking-Johnson D et al (1996) Prelabeled glycoprotein Ib/IX receptors are not cleared from exposed surfaces of thrombin-activated platelets. Am J Pathol 149:629–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedmer T, Shattil SJ, Cunningham M et al (1990) Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry 29:623–632

    Article  CAS  PubMed  Google Scholar 

  • Zharikov S, Shiva S (2013) Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans 41:118–123

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman GA, Weyrich AS (2008) Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol 28:s17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker-Franklin D (1969) Microfibrils of blood platelets: their relationship to microtubules and the contractile protein. J Clin Invest 48:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker-Franklin D (2003) Megakaryocytes and platelets. In: Atlas of blood cells, vol 2, 3rd edn, pp 810–863

    Google Scholar 

  • Zucker-Franklin D, Grusky G (1972) The actin and myosin filaments of human and bovine blood platelets. J Clin Invest 51:419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry F. G. Heijnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Heijnen, H.F.G., Korporaal, S.J.A. (2017). Platelet Morphology and Ultrastructure. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_3

Download citation

Publish with us

Policies and ethics