Skip to main content

Abstract

Platelets circulate quiescently in a flat, discoid state and undergo specific morphological changes to support granule secretion, integrin activation, platelet–platelet aggregation, adhesion, and contractile processes in the initial stages of the platelet activation program. Dynamic changes in platelet shape have long been associated with platelet activation and hemostatic and thrombotic function. Classical microscopy studies, together with the development of light transmission aggregometry, allowed for an advance of platelet shape change assays as important experimental and clinical tools. Pharmacology efforts have specified how platelet agonists, including thrombin, collagen, and ADP activate G protein-coupled receptors (GPCRs) or ITAM-bearing receptors to increase myosin light chain phosphorylation to drive actomyosin contractions and other dynamic cytoskeletal processes that form the basis for the initiation of platelet shape change. Advances in imaging technologies and molecular tools continue to provide mechanistic insights into platelet shape change as one of the earliest morphological manifestations of platelet activation, a potential biomarker for platelet-based disease states and a powerful tool in basic and translational studies of platelet function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aburima A, Wraith KS, Raslan Z, Law R, Magwenzi S, Naseem KM (2013) cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway. Blood 122(20):3533–3545

    Article  CAS  PubMed  Google Scholar 

  • Allen RD, Zacharski LR, Widirstky ST, Rosenstein R, Zaitlin LM, Burgess DR (1979) Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy. J Cell Biol 83(1):126–142

    Article  CAS  PubMed  Google Scholar 

  • Alshehri OM, Montague S, Watson S, Carter P, Sarker N, Manne BK, Miller JL, Herr AB, Pollitt AY, O’Callaghan CA, Kunapuli S, Arman M, Hughes CE, Watson SP (2015) Activation of glycoprotein VI (GPVI) and C-type lectin-like receptor-2 (CLEC-2) underlies platelet activation by diesel exhaust particles and other charged/hydrophobic ligands. Biochem J 468(3):459–473

    Article  CAS  PubMed  Google Scholar 

  • Althaus K, Greinacher A (2009) MYH9-related platelet disorders. Semin Thromb Hemost 35(2):189–203

    Article  CAS  PubMed  Google Scholar 

  • Aslan JE, McCarty OJ (2013) Rho GTPases in platelet function. J Thromb Haemost 11(1):35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Thomas G (2009) Death by committee: organellar trafficking and communication in apoptosis. Traffic 10(10):1390–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan JE, Itakura A, Gertz JM, McCarty OJ (2012) Platelet shape change and spreading. Methods Mol Biol 788:91–100

    Article  CAS  PubMed  Google Scholar 

  • Atkinson BT, Ellmeier W, Watson SP (2003) Tec regulates platelet activation by GPVI in the absence of Btk. Blood 102(10):3592–3599

    Article  CAS  PubMed  Google Scholar 

  • Badimon L, Badimon JJ, Galvez A, Chesebro JH, Fuster V (1986) Influence of arterial damage and wall shear rate on platelet deposition. Ex vivo study in a swine model. Arteriosclerosis 6(3):312–320

    Article  CAS  PubMed  Google Scholar 

  • Barkalow KL, Italiano JE Jr, Chou DE, Matsuoka Y, Bennett V, Hartwig JH (2003) Alpha-adducin dissociates from F-actin and spectrin during platelet activation. J Cell Biol 161(3):557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Retzer M, Wilde JI, Maschberger P, Essler M, Aepfelbacher M, Watson SP, Siess W (1999) Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood 94(5):1665–1672

    CAS  PubMed  Google Scholar 

  • Bearer EL, Prakash JM, Manchester RD, Allen PG (2000) VASP protects actin filaments from gelsolin: an in vitro study with implications for platelet actin reorganizations. Cell Motil Cytoskeleton 47(4):351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender M, Eckly A, Hartwig JH, Elvers M, Pleines I, Gupta S, Krohne G, Jeanclos E, Gohla A, Gurniak C, Gachet C, Witke W, Nieswandt B (2010) ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 116(10):1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K, Schulze H, Morbach H, Stegner D, Heinze KG, Dutting S, Gupta S, Witke W, Falet H, Fischer A, Hartwig JH, Nieswandt B (2014) Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746

    Article  CAS  PubMed  Google Scholar 

  • Bertolini F, Murphy S (1994) A multicenter evaluation of reproducibility of swirling in platelet concentrates. Biomedical Excellence for Safer Transfusion (BEST) Working Party of the International Society of Blood Transfusion. Transfusion 34(9):796–801

    Article  CAS  PubMed  Google Scholar 

  • Best LC, Martin TJ, Russell RG, Preston FE (1977) Prostacyclin increases cyclic AMP levels and adenylate cyclase activity in platelets. Nature 267(5614):850–852

    Article  CAS  PubMed  Google Scholar 

  • Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122(2):429–436

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Blanco P, Nigrovic PA (2012) Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 8(9):534–542

    Article  CAS  PubMed  Google Scholar 

  • Born GV (1985) Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view. Circulation 72(4):741–746

    Article  CAS  PubMed  Google Scholar 

  • Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ (2008) Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 112(7):2780–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690

    Article  CAS  PubMed  Google Scholar 

  • Canobbio I, Noris P, Pecci A, Balduini A, Balduini CL, Torti M (2005) Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost 3(5):1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Casella JF, Flanagan MD, Lin S (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293(5830):302–305

    Article  CAS  PubMed  Google Scholar 

  • Chen J, De S, Damron DS, Chen WS, Hay N, Byzova TV (2004) Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 104(6):1703–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd (2005) Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 115(3):680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemetson KJ, Clemetson JM (2001) Platelet collagen receptors. Thromb Haemost 86(1):189–197

    CAS  PubMed  Google Scholar 

  • Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345

    Article  CAS  PubMed  Google Scholar 

  • Conti MA, Adelstein RS (2008) Nonmuscle myosin II moves in new directions. J Cell Sci 121(Pt 1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264

    Article  CAS  PubMed  Google Scholar 

  • Daniel JL, Molish IR, Rigmaiden M, Stewart G (1984) Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 259(15):9826–9831

    CAS  PubMed  Google Scholar 

  • Dasgupta SK, Le A, Haudek SB, Entman ML, Rumbaut RE, Thiagarajan P (2013) Rho associated coiled-coil kinase-1 regulates collagen-induced phosphatidylserine exposure in platelets. PLoS One 8(12):e84649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Clerck FF, Herman AG (1983) 5-hydroxytryptamine and platelet aggregation. Fed Proc 42(2):228–232

    PubMed  Google Scholar 

  • Dejana E, Barbieri B, de Gaetano G (1980) “Aspirinated” platelets are hemostatic in thrombocytopenic rats with “nonaspirinated” vessel walls—evidence from an exchange transfusion model. Blood 56(6):959–962

    CAS  PubMed  Google Scholar 

  • Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K (2014) Motor-driven marginal band coiling promotes cell shape change during platelet activation. J Cell Biol 204(2):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diz-Kucukkaya R (2013) Inherited platelet disorders including Glanzmann thrombasthenia and Bernard-Soulier syndrome. Hematology Am Soc Hematol Educ Program 2013:268–275

    PubMed  Google Scholar 

  • Dutting S, Bender M, Nieswandt B (2012) Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol Sci 33(11):583–590

    Article  PubMed  CAS  Google Scholar 

  • Erne P, Resink TJ, Burgisser E, Buhler FR (1985) Platelets and hypertension. J Cardiovasc Pharmacol 7(Suppl 6):S103–S108

    Article  CAS  PubMed  Google Scholar 

  • Falet H, Barkalow KL, Pivniouk VI, Barnes MJ, Geha RS, Hartwig JH (2000) Roles of SLP-76, phosphoinositide 3-kinase, and gelsolin in the platelet shape changes initiated by the collagen receptor GPVI/FcR gamma-chain complex. Blood 96(12):3786–3792

    CAS  PubMed  Google Scholar 

  • Falet H, Hoffmeister KM, Neujahr R, Hartwig JH (2002) Normal Arp2/3 complex activation in platelets lacking WASp. Blood 100(6):2113–2122

    CAS  PubMed  Google Scholar 

  • Ferguson JH (1934) Observations on the alterations of blood platelets as a factor in coagulation of the blood. Am J Physiol Legacy Content 108(3):670–682

    Google Scholar 

  • Fitzgerald JR, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 4(6):445–457

    Article  CAS  PubMed  Google Scholar 

  • Freson K, De Vos R, Wittevrongel C, Thys C, Defoor J, Vanhees L, Vermylen J, Peerlinck K, Van Geet C (2005) The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 106(7):2356–2362

    Article  CAS  PubMed  Google Scholar 

  • Frojmovic MM, Milton JG (1982) Human platelet size, shape, and related functions in health and disease. Physiol Rev 62(1):185–261

    CAS  PubMed  Google Scholar 

  • Fujimura K, Fujimoto T, Takemoto M, Oda K, Shimomura T, Maehama S, Kuramoto A (1990) Analysis of platelet cytoskeleton assembly during platelet activation in Hermansky-Pudlak syndrome and thrombasthenia. Thromb Haemost 63(1):103–111

    CAS  PubMed  Google Scholar 

  • Gear AR (1994) Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events. Can J Physiol Pharmacol 72(3):285–294

    Article  CAS  PubMed  Google Scholar 

  • Gerrard JM, White JG, Peterson DA (1978) The platelet dense tubular system: its relationship to prostaglandin synthesis and calcium flux. Thromb Haemost 40(2):224–231

    CAS  PubMed  Google Scholar 

  • Haimovich B, Lipfert L, Brugge JS, Shattil SJ (1993) Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem 268(21):15868–15877

    CAS  PubMed  Google Scholar 

  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280(5372):2112–2114

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH (2006) The platelet: form and function. Semin Hematol 43(1 Suppl 1):S94–S100

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH, DeSisto M (1991) The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 112(3):407–425

    Article  CAS  PubMed  Google Scholar 

  • Hathaway DR, Adelstein RS (1979) Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A 76(4):1653–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH (2001) Mechanisms of cold-induced platelet actin assembly. J Biol Chem 276(27):24751–24759

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, von Andrian UH, Wagner DD, Stossel TP, Hartwig JH (2003) The clearance mechanism of chilled blood platelets. Cell 112(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Holme S, Moroff G, Murphy S (1998) A multi-laboratory evaluation of in vitro platelet assays: the tests for extent of shape change and response to hypotonic shock. Biomedical Excellence for Safer Transfusion Working Party of the International Society of Blood Transfusion. Transfusion 38(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Hughan SC, Senis Y, Best D, Thomas A, Frampton J, Vyas P, Watson SP (2005) Selective impairment of platelet activation to collagen in the absence of GATA1. Blood 105(11):4369–4376

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92(9):1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Bergmeier W, Tiwari S, Falet H, Hartwig JH, Hoffmeister KM, Andre P, Wagner DD, Shivdasani RA (2003) Mechanisms and implications of platelet discoid shape. Blood 101(12):4789–4796

    Article  CAS  PubMed  Google Scholar 

  • Jagroop IA, Mikhailidis DP (2008) The effect of tirofiban on fibrinogen/agonist-induced platelet shape change and aggregation. Clin Appl Thromb Hemost 14(3):295–302

    Article  CAS  PubMed  Google Scholar 

  • Jalagadugula G, Mao G, Kaur G, Goldfinger LE, Dhanasekaran DN, Rao AK (2010) Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood 116(26):6037–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardin I, Lopez JJ, Pariente JA, Salido GM, Rosado JA (2008) Intracellular calcium release from human platelets: different messengers for multiple stores. Trends Cardiovasc Med 18(2):57–61

    Article  CAS  PubMed  Google Scholar 

  • Jarvis GE, Atkinson BT, Snell DC, Watson SP (2002) Distinct roles of GPVI and integrin alpha(2)beta(1) in platelet shape change and aggregation induced by different collagens. Br J Pharmacol 137(1):107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BO, Selheim F, Doskeland SO, Gear AR, Holmsen H (2004) Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide. Blood 104(9):2775–2782

    Article  CAS  PubMed  Google Scholar 

  • Johnson GJ, Leis LA, Krumwiede MD, White JG (2007) The critical role of myosin IIA in platelet internal contraction. J Thromb Haemost 5(7):1516–1529

    Article  CAS  PubMed  Google Scholar 

  • Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326

    Article  CAS  PubMed  Google Scholar 

  • Kile BT (2014) The role of apoptosis in megakaryocytes and platelets. Br J Haematol 165(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kunapuli SP (2011) Negative regulation of Gq-mediated pathways in platelets by G(12/13) pathways through Fyn kinase. J Biol Chem 286(27):24170–24179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinlough-Rathbone RL, Reimers HJ, Mustard JF, Packham MA (1976) Sodium arachidonate can induce platelet shape change and aggregation which are independent of the release reaction. Science 192(4243):1011–1012

    Article  CAS  PubMed  Google Scholar 

  • Kitek A, Breddin K (1980) Optical density variations and microscopic observations in the evaluation of platelet shape change and microaggregate formation. Thromb Haemost 44(3):154–158

    CAS  PubMed  Google Scholar 

  • Kiuru S, Javela K, Somer H, Kekomaki R (2000) Altered platelet shape change in hereditary gelsolin Asp187Asn-related amyloidosis. Thromb Haemost 83(3):491–495

    CAS  PubMed  Google Scholar 

  • Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279(34):35557–35563

    Article  CAS  PubMed  Google Scholar 

  • Kraus MJ, Strasser EF, Eckstein R (2010) A new method for measuring the dynamic shape change of platelets. Transfus Med Hemother 37(5):306–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus MJ, Neeb H, Strasser EF (2014) Fractal and Euclidean descriptors of platelet shape. Platelets 25(7):488–498

    Article  CAS  PubMed  Google Scholar 

  • Kunert S, Meyer I, Fleischhauer S, Wannack M, Fiedler J, Shivdasani RA, Schulze H (2009) The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood 114(27):5532–5540

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara M, Sugimoto M, Tsuji S, Matsui H, Mizuno T, Miyata S, Yoshioka A (2002) Platelet shape changes and adhesion under high shear flow. Arterioscler Thromb Vasc Biol 22(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Lam WA, Chaudhuri O, Crow A, Webster KD, Li TD, Kita A, Huang J, Fletcher DA (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Lee KG, Miller T, Anastassov I, Cohen WD (2004) Shape transformation and cytoskeletal reorganization in activated non-mammalian thrombocytes. Cell Biol Int 28(4):299–310

    Article  CAS  PubMed  Google Scholar 

  • Leon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C, Jourdain M, Nonne C, Weber J, Tiedt R, Gratacap MP, Severin S, Cazenave JP, Lanza F, Skoda R, Gachet C (2007) Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 110(9):3183–3191

    Article  CAS  PubMed  Google Scholar 

  • Leytin V (2012) Apoptosis in the anucleate platelet. Blood Rev 26(2):51–63

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Kim ES, Bearer EL (2002) Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 99(12):4466–4474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Delaney MK, O’Brien KA, Du X (2010) Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 30(12):2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JJ, Redondo PC, Salido GM, Pariente JA, Rosado JA (2006) Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cell Signal 18(3):373–381

    Article  CAS  PubMed  Google Scholar 

  • Mangin P, Yuan Y, Goncalves I, Eckly A, Freund M, Cazenave JP, Gachet C, Jackson SP, Lanza F (2003) Signaling role for phospholipase C gamma 2 in platelet glycoprotein Ib alpha calcium flux and cytoskeletal reorganization. Involvement of a pathway distinct from FcR gamma chain and Fc gamma RIIA. J Biol Chem 278(35):32880–32891

    Article  CAS  PubMed  Google Scholar 

  • Mannucci PM, Sharp AA (1967) Platelet volume and shape in relation to aggregation and adhesion. Br J Haematol 13(4):604–617

    Article  CAS  PubMed  Google Scholar 

  • Maurer-Spurej E, Chipperfield K (2007) Past and future approaches to assess the quality of platelets for transfusion. Transfus Med Rev 21(4):295–306

    Article  PubMed  Google Scholar 

  • Maurer-Spurej E, Devine DV (2001) Platelet aggregation is not initiated by platelet shape change. Lab Invest 81(11):1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Maxwell MJ, Dopheide SM, Turner SJ, Jackson SP (2006) Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol 26(3):663–669

    Article  CAS  PubMed  Google Scholar 

  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109(2):566–576

    Article  CAS  PubMed  Google Scholar 

  • McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, Ruf S, Henderson RB, Tybulewicz VL, Machesky LM, Watson SP (2005) Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 280(47):39474–39484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV (2014) Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 33(1):231–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer I, Kunert S, Schwiebert S, Hagedorn I, Italiano JE Jr, Dutting S, Nieswandt B, Bachmann S, Schulze H (2012) Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood 120(17):3594–3602

    Article  CAS  PubMed  Google Scholar 

  • Michal F, Born GV (1971) Effect of the rapid shape change of platelets on the transmission and scattering of light through plasma. Nat New Biol 231(24):220–222

    Article  CAS  PubMed  Google Scholar 

  • Milton JG, Hutton RA, Tuddenham EG, Frojmovic MM (1985) Platelet size and shape in hereditary giant platelet syndromes on blood smear and in suspension: evidence for two types of abnormalities. J Lab Clin Med 106(3):326–335

    CAS  PubMed  Google Scholar 

  • Mindukshev I, Gambaryan S, Kehrer L, Schuetz C, Kobsar A, Rukoyatkina N, Nikolaev VO, Krivchenko A, Watson SP, Walter U, Geiger J (2012) Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clin Chem Lab Med 50(7):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Moers A, Wettschureck N, Gruner S, Nieswandt B, Offermanns S (2004) Unresponsiveness of platelets lacking both Galpha(q) and Galpha(13). Implications for collagen-induced platelet activation. J Biol Chem 279(44):45354–45359

    Article  CAS  PubMed  Google Scholar 

  • Monroe DM, Hoffman M, Roberts HR (2002) Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 22(9):1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14(3):325–330

    Article  CAS  PubMed  Google Scholar 

  • Moskalensky AE, Yurkin MA, Konokhova AI, Strokotov DI, Nekrasov VM, Chernyshev AV, Tsvetovskaya GA, Chikova ED, Maltsev VP (2013) Accurate measurement of volume and shape of resting and activated blood platelets from light scattering. J Biomed Opt 18(1):17001

    Article  PubMed  CAS  Google Scholar 

  • Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16(8):486–498

    Article  CAS  PubMed  Google Scholar 

  • Nachmias VT, Kavaler J, Jacubowitz S (1985) Reversible association of myosin with the platelet cytoskeleton. Nature 313(5997):70–72

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102(2):449–461

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Bergmeier W, Schulte V, Rackebrandt K, Gessner JE, Zirngibl H (2000) Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRgamma chain. J Biol Chem 275(31):23998–24002

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Bergmeier W, Eckly A, Schulte V, Ohlmann P, Cazenave JP, Zirngibl H, Offermanns S, Gachet C (2001) Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood 97(12):3829–3835

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fassler R (2007) Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 204(13):3113–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurden AT, Nurden P (2007) The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 21(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Oda A, Miki H, Wada I, Yamaguchi H, Yamazaki D, Suetsugu S, Nakajima M, Nakayama A, Okawa K, Miyazaki H, Matsuno K, Ochs HD, Machesky LM, Fujita H, Takenawa T (2005) WAVE/scars in platelets. Blood 105(8):3141–3148

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99(12):1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S, Toombs CF, Hu YH, Simon MI (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389(6647):183–186

    Article  CAS  PubMed  Google Scholar 

  • Otterdal K, Pedersen TM, Solum NO (2001) Platelet shape change induced by the peptide YFLLRNP. Thromb Res 103(5):411–420

    Article  CAS  PubMed  Google Scholar 

  • Owen CA Jr, Goldstein NP, Bowie JW (1976) Platelet function and coagulation in patients with Wilson disease. Arch Intern Med 136(2):148–152

    Article  PubMed  Google Scholar 

  • Pasquet JM, Gross B, Quek L, Asazuma N, Zhang W, Sommers CL, Schweighoffer E, Tybulewicz V, Judd B, Lee JR, Koretzky G, Love PE, Samelson LE, Watson SP (1999) LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI. Mol Cell Biol 19(12):8326–8334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel-Hett S, Richardson JL, Schulze H, Drabek K, Isaac NA, Hoffmeister K, Shivdasani RA, Bulinski JC, Galjart N, Hartwig JH, Italiano JE Jr (2008) Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood 111(9):4605–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patscheke H, Worner P (1978) Platelet activation detected by turbidometric shape-change analysis: differential influence of cytochalasin B and prostaglandin E1. Thromb Res 12(3):485–496

    Article  CAS  PubMed  Google Scholar 

  • Paul BZ, Daniel JL, Kunapuli SP (1999) Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. J Biol Chem 274(40):28293–28300

    Article  CAS  PubMed  Google Scholar 

  • Pearce AC, Senis YA, Billadeau DD, Turner M, Watson SP, Vigorito E (2004) Vav1 and vav3 have critical but redundant roles in mediating platelet activation by collagen. J Biol Chem 279(52):53955–53962

    Article  CAS  PubMed  Google Scholar 

  • Penz S, Reininger AJ, Brandl R, Goyal P, Rabie T, Bernlochner I, Rother E, Goetz C, Engelmann B, Smethurst PA, Ouwehand WH, Farndale R, Nieswandt B, Siess W (2005) Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J 19(8):898–909

    Article  CAS  PubMed  Google Scholar 

  • Phillips DR, Scarborough RM (1997) Clinical pharmacology of eptifibatide. Am J Cardiol 80(4A):11B–20B

    Article  CAS  PubMed  Google Scholar 

  • Phillips KG, Kolatkar A, Rees KJ, Rigg R, Marrinucci D, Luttgen M, Bethel K, Kuhn P, McCarty OJ (2012) Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient. Front Oncol 2:96

    PubMed  PubMed Central  Google Scholar 

  • Pleines I, Elvers M, Strehl A, Pozgajova M, Varga-Szabo D, May F, Chrostek-Grashoff A, Brakebusch C, Nieswandt B (2009) Rac1 is essential for phospholipase C-gamma2 activation in platelets. Pflugers Arch 457(5):1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Hagedorn I, Gupta S, May F, Chakarova L, van Hengel J, Offermanns S, Krohne G, Kleinschnitz C, Brakebusch C, Nieswandt B (2012) Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood 119(4):1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Polanowska-Grabowska R, Gibbins JM, Gear AR (2003) Platelet adhesion to collagen and collagen-related peptide under flow: roles of the [alpha]2[beta]1 integrin, GPVI, and Src tyrosine kinases. Arterioscler Thromb Vasc Biol 23(10):1934–1940

    Article  CAS  PubMed  Google Scholar 

  • Porta M, Hilgard P, Kohner EM (1980) Platelet shape change abnormalities in diabetic retinopathy. Diabetologia 18(3):217–221

    Article  CAS  PubMed  Google Scholar 

  • Rand ML, Leung R, Packham MA (2003) Platelet function assays. Transfus Apher Sci 28(3):307–317

    Article  PubMed  Google Scholar 

  • Raslan Z, Magwenzi S, Aburima A, Tasken K, Naseem KM (2015) Targeting of type I protein kinase A to lipid rafts is required for platelet inhibition by the 3′,5′-cyclic adenosine monophosphate-signaling pathway. J Thromb Haemost 13(9):1721–1734

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen UB, Gachet C, Schlesinger Y, Hanau D, Ohlmann P, Van Obberghen-Schilling E, Pouyssegur J, Cazenave JP, Pavirani A (1993) A peptide ligand of the human thrombin receptor antagonizes alpha-thrombin and partially activates platelets. J Biol Chem 268(19):14322–14328

    CAS  PubMed  Google Scholar 

  • Reddi BA, Iannella SM, O’Connor SN, Deane AM, Willoughby SR, Wilson DP (2015) Attenuated platelet aggregation in patients with septic shock is independent from the activity state of myosin light chain phosphorylation or a reduction in Rho kinase-dependent inhibition of myosin light chain phosphatase. Intensive Care Med Exp 3(1):37

    Article  PubMed  Google Scholar 

  • Redondo PC, Harper MT, Rosado JA, Sage SO (2006) A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood 107(3):973–979

    Article  CAS  PubMed  Google Scholar 

  • Rink TJ, Smith SW, Tsien RY (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 148(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Rodman NF Jr, Mason RG, Mc DN, Brinkhous KM (1962) Morphologic alterations of human blood platelets during early phases of clotting. Electron microscopic observations of thin sections. Am J Pathol 40:271–284

    PubMed  PubMed Central  Google Scholar 

  • Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha, beta-methylene ATP. Thromb Haemost 85(2):303–308

    CAS  PubMed  Google Scholar 

  • Sadoul K (2015) New explanations for old observations: marginal band coiling during platelet activation. J Thromb Haemost 13(3):333–346

    Article  CAS  PubMed  Google Scholar 

  • Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413(6851):74–78

    Article  CAS  PubMed  Google Scholar 

  • Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, Josefsson EC, Alwis I, Ono A, Willcox A, Andrews RK, Mason KD, Salem HH, Huang DC, Kile BT, Roberts AW, Jackson SP (2011) Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118(6):1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  CAS  PubMed  Google Scholar 

  • Senis YA (2013) Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 11(10):1800–1813

    CAS  PubMed  Google Scholar 

  • Senis YA, Mazharian A, Mori J (2014) Src family kinases: at the forefront of platelet activation. Blood 124(13):2013–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin S, Pollitt AY, Navarro-Nunez L, Nash CA, Mourao-Sa D, Eble JA, Senis YA, Watson SP (2011) Syk-dependent phosphorylation of CLEC-2: a novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J Biol Chem 286(6):4107–4116

    Article  CAS  PubMed  Google Scholar 

  • Severin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, Senis YA, Watson SP (2012) Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 10(8):1631–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava M (2009) The platelet storage lesion. Transfus Apher Sci 41(2):105–113

    Article  PubMed  Google Scholar 

  • Siess W, Weber PC, Lapetina EG (1984) Activation of phospholipase C is dissociated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor. Epinephrine does not induce phospholipase C activation or platelet shape change. J Biol Chem 259(13):8286–8292

    CAS  PubMed  Google Scholar 

  • Spalton JC, Mori J, Pollitt AY, Hughes CE, Eble JA, Watson SP (2009) The novel Syk inhibitor R406 reveals mechanistic differences in the initiation of GPVI and CLEC-2 signaling in platelets. J Thromb Haemost 7(7):1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Stalker TJ, Welsh JD, Brass LF (2014) Shaping the platelet response to vascular injury. Curr Opin Hematol 21(5):410–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner M, Ikeda Y (1979) Quantitative assessment of polymerized and depolymerized platelet microtubules. Changes caused by aggregating agents. J Clin Invest 63(3):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107(2):542–549

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Inoue K, Inoue O, Ozaki Y (2011) Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost 9(Suppl 1):44–55

    Article  CAS  PubMed  Google Scholar 

  • Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7(7):1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Varga-Szabo D, Braun A, Nieswandt B (2011) STIM and Orai in platelet function. Cell Calcium 50(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Lian L, Tang T, Stalker TJ, Sasaki T, Kanaho Y, Brass LF, Choi JK, Hartwig JH, Abrams CS (2008) Loss of PIP5KIbeta demonstrates that PIP5KI isoform-specific PIP2 synthesis is required for IP3 formation. Proc Natl Acad Sci U S A 105(37):14064–14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Ito M, Kataoka Y, Wada H, Koyama M, Feng J, Shiku H, Nishikawa M (2001) Protein kinase C-catalyzed phosphorylation of an inhibitory phosphoprotein of myosin phosphatase is involved in human platelet secretion. Blood 97(12):3798–3805

    Article  CAS  PubMed  Google Scholar 

  • White JG (1968) Tubular elements in platelet granules. Blood 32(1):148–156

    CAS  PubMed  Google Scholar 

  • White JG (2000) EDTA-induced changes in platelet structure and function: clot retraction. Platelets 11(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • White JG, Burris SM (1984) Morphometry of platelet internal contraction. Am J Pathol 115(3):412–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Krivit W (1967) An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 30(5):625–635

    CAS  PubMed  Google Scholar 

  • White JG, Rao GH (1983) Influence of a microtubule stabilizing agent on platelet structural physiology. Am J Pathol 112(2):207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Rao GH (1998) Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 152(2):597–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Rao GH, Gerrard JM (1974) Effects of the lonophore A23187 on blood platelets I. Influence on aggregation and secretion. Am J Pathol 77(2):135–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winokur R, Hartwig JH (1995) Mechanism of shape change in chilled human platelets. Blood 85(7):1796–1804

    CAS  PubMed  Google Scholar 

  • Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ (1995) Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Woronowicz K, Dilks JR, Rozenvayn N, Dowal L, Blair PS, Peters CG, Woronowicz L, Flaumenhaft R (2010) The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 49(21):4533–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wraith KS, Magwenzi S, Aburima A, Wen Y, Leake D, Naseem KM (2013) Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways. Blood 122(4):580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Lee CY, Teng CM (2002) Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb Haemost 87(6):1026–1033

    CAS  PubMed  Google Scholar 

  • Zhou L, Schmaier AH (2005) Platelet aggregation testing in platelet-rich plasma: description of procedures with the aim to develop standards in the field. Am J Clin Pathol 123(2):172–183

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Aslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aslan, J.E. (2017). Platelet Shape Change. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_24

Download citation

Publish with us

Policies and ethics