Skip to main content

Step-Growth Polymers from Cashew Nut Shell Liquid (CNSL)-Based Aromatic Difunctional Monomers

  • Chapter
  • First Online:
Cashew Nut Shell Liquid

Abstract

Cashew nut shell liquid (CNSL) is an attractive renewable resource material which is available in abundance (44,50,000 tonnes worldwide and 7,53,000 tonnes in India in 2013) at low cost (around 0.27 $/kg in 2015) and is mainly composed of anacardic acid, cardanol, cardol and 2-methyl cardol. Cardanol is obtained as a major product during hot oil extraction or roasting process of CNSL. Cardanol possesses interesting structural features. The aromatic ring of cardanol can undergo electrophilic substitution reactions; the unsaturated side chain can undergo epoxidation, hydrogenation, metathesis, etc., while the phenolic hydroxyl group can undergo various reactions such as esterification and alkylation. Such opportunities of chemical modifications offered by cardanol have been extensively explored to synthesise a range of interesting aromatic difunctional monomers that have subsequently been utilised to prepare a host of step-growth polymers. Summarised herein are research efforts that have contributed towards the synthesis of step-growth polymers based on aromatic difunctional monomers derived from cardanol. The properties of high-performance polymers, with a particular focus on processability and thermal characteristics, are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munoz-Guerra S, Lavilla C, Japu C, Martinez de Ilarduya A (2014) Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chem 16:1716

    Google Scholar 

  2. Meier M (2014) Sustainable polymers: reduced environmental impact, renewable raw materials and catalysis. Green Chem 16:1672

    Google Scholar 

  3. Xu Y, Hanna MA, Isom L (2008) “Green” Chemicals from Renewable Agricultural Biomass–A Mini Review. Open Agric J 2:54

    Google Scholar 

  4. Big Chemical Encyclopedia (2015) http://chempedia.info/info/151307/. Accessed 13 July 2016

  5. Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature (London) 426:323

    Google Scholar 

  6. Brooks JD, Smith JW (1969) The diagenesis of plant lipids during the formation of coal, petroleum and natural gas—II. Coalification and the formation of oil and gas in the Gippsland Basin. Geochim Cosmochim Acta 33:1183

    Google Scholar 

  7. Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin

    Google Scholar 

  8. Mango FD (1997) The light hydrocarbons in petroleum: a critical review. Org Geochem 26:417

    Google Scholar 

  9. Crocker M, Crofcheck C (2006) Biomass conversion to liquid fuels and chemicals. Energeia 17:1

    Google Scholar 

  10. Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 1:107

    Google Scholar 

  11. U.S. Biobased Products: Market Potential and Projections Through 2025 (2008). In: United States Department of Agriculture, Office of the Chief Economist. Available via http://www.usda.gov/oce/reports/energy/BiobasedReport2008.pdf. Accessed 13 July 2016

  12. de Jong Ed, Jungmeier G (2015) Industrial biorefineries and white biotechnology, Chap 1, p 3

    Google Scholar 

  13. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51:1412

    Google Scholar 

  14. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915

    Google Scholar 

  15. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renewable Sustainable Energy Rev 14:578

    Google Scholar 

  16. Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200

    Google Scholar 

  17. Belgacem MN, Gandini A (eds) (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  18. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987

    Google Scholar 

  19. Lochab B, Shukla S, Varma IK (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4:21712

    Google Scholar 

  20. CatchBio. http://www.catchbio.com/. Accessed 13 July 2016

  21. BIO-TIC. http://www.industrialbiotech-europe.eu/. Accessed 13 July 2016

  22. ARENA. http://arena.gov.au/. Accessed 13 July 2016

  23. Delft Advanced Biorenewables. http://delftab.com/. Accessed 13 July 2016

  24. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1

    Google Scholar 

  25. Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD (2014) The quest for sustainable polyesters–insights into the future. Polym Chem 5:3119

    Google Scholar 

  26. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637

    Google Scholar 

  27. Sousa AF, Vitela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961

    Google Scholar 

  28. Tschan MJ-L, Brule E, Haquette P, Thomas CM (2012) Synthesis of biodegradable polymers from renewable resources. Polym Chem 3:836

    Google Scholar 

  29. Zhang L, Liu Z, Cui G, Chen L (2015) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136

    Google Scholar 

  30. Datta J, Wloch M (2014) Selected biotrends in development of epoxy resins and their composites. Polym Bull 71:3035

    Google Scholar 

  31. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8

    Google Scholar 

  32. Llevot A, Grau E, Carlotti S, Grelier S, Cramail H (2016) From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 37:9

    Google Scholar 

  33. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275

    Google Scholar 

  34. Galbis JA, Garcia-Martin MG, de Paz MV, Galbis E (2016) Synthetic polymers from sugar-based monomers. Chem Rev 116:1600

    Google Scholar 

  35. Arbenz A, Averous L (2015) Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 17:2626

    Google Scholar 

  36. Food and Agriculture Organisation of the United Nations Statistics Division (FAOSTAT) (2013). http://faostat3.fao.org/home/E. Accessed 13 July 2016

  37. Tyman JHP (1996) Synthetic and natural phenols. Elsevier, Amsterdam

    Google Scholar 

  38. Attanasi OA (1983) Chemistry and industrial utilization of polyketide natural long chain phenols. Chim Oggi 8:11

    Google Scholar 

  39. Harvey MT, Caplan S (1940) Cashew nut shell liquid. Ind Eng Chem 32:1306

    Google Scholar 

  40. Paramashivappa R, Phani Kumar P, Vithayathil PJ, Srinivasa Rao A (2001) Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 49:2548

    Google Scholar 

  41. Manjula S, Pillai CKS, Kumar VG (1990) Thermal characterization of cardanol-formaldehyde resins and cardanol-formaldehyde/poly(methyl methacrylate) semi-interpenetrating polymer networks. Thermochim Acta 159:255

    Google Scholar 

  42. Tyman JHP, Johnson RA, Muir RA, Rokhgar R (1989) The Extraction of natural cashew nut-shell liquid From the cashew nut (Anacardium occidentale). J Am Oil Chem Soc 66:553

    Google Scholar 

  43. Jain RK, Kumar S (1997) Development of a cashew nut sheller. J Food Eng 32:339

    Google Scholar 

  44. Patel RN, Bandyopadhyay S, Ganesh A (2011) Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy 36:1535

    Google Scholar 

  45. Gandhi T, Patel M, Dholakiya BK (2012) Studies on effect of various solvents on extraction of cashew nut shell liquid (CNSL) and isolation of major phenolic constituents from extracted CNSL. J Nat Prod Plant Resour 2:135

    Google Scholar 

  46. Lubi MC, Thachil ET (2000) Cashew nut shell liquid (CNSL)–a versatile monomer for polymer synthesis. Des Monomers Polym 3:123

    Google Scholar 

  47. Gedam PH, Sampathkumaran PS (1986) Cashew nut shell liquid: extraction, chemistry and applications. Prog Org Coat 14:115

    Google Scholar 

  48. Bladzell P (2000) The mighty cashew. Interdisciplinary Sci Rev 25:220

    Google Scholar 

  49. Mele G, Vasapollo G (2008) Fine chemicals and new hybrid materials from cardanol. Mini-Rev Org Chem 5:243

    Google Scholar 

  50. Balachandran VS, Jadhav SR, Vemula PK, John G (2013) Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem Soc Rev 42:427

    Google Scholar 

  51. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142

    Google Scholar 

  52. Tyman JHP, Wilczynski D, Kashani MA (1978) Compositional studies on technical cashew nut shell liquid (CNSL) by Chromatography and Mass Spectroscopy. J Am Oil Chem Soc 55:663

    Google Scholar 

  53. Trevisan MTS, Pfundstein B, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H, Owen RW (2006) Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem Toxicol 44:188

    Google Scholar 

  54. Cardolite. https://www.cardolite.com/. Accessed 13 July 2016

  55. Varma AJ, Sivaram S (2002) U.S. Patent US6451957B1

    Google Scholar 

  56. Sadavarte NV (2012) Ph.D. thesis, University of Pune, India

    Google Scholar 

  57. Tawade BV, Salunke JK, Sane PS, Wadgaonkar PP (2014) Processable aromatic polyesters based on bisphenol derived from cashew nut shell liquid: synthesis and characterization. J Polym Res 21:617

    Google Scholar 

  58. Tawade BV, Shaligram SV, Valsange NG, Kharul UK, Wadgaonkar PP (2016) Synthesis and properties of poly(arylene ether)s based on 3-pentadecyl 4,4'-biphenol. Polym Int 65:567

    Google Scholar 

  59. Tawade BV (2015) Ph.D. thesis, Savitribhai Phule Pune University, India

    Google Scholar 

  60. Bhunia HP, Jana RN, Basak A, Lenka S, Nando GB (1998) Synthesis of polyurethane from cashew nut shell liquid (CNSL), a renewable resource. J Polym Sci A Polym Chem 36:391

    Google Scholar 

  61. Bhunia HP, Nando GB, Chaki TK, Basak A, Lenka S, Nayak PL (1999) Synthesis and characterization of polymers from cashew nut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. Eur Polym J 35:1381

    Google Scholar 

  62. Shingte RD (2006) Ph.D. thesis, University of Pune, India

    Google Scholar 

  63. Avadhani CV, Wadgaonkar PP, Sivaram S (2001) U. S. US6255439B1

    Google Scholar 

  64. More AS, Pasale SK, Honkhambe PN, Wadgaonkar PP (2011) Synthesis and characterization of organo-soluble poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains. J Appl Polym Sci 121:3689

    Google Scholar 

  65. More AS, Naik PV, Kumbhar KP, Wadgaonkar PP (2010) Synthesis and characterization of polyesters based on 1,1,1-[bis(4-hydroxyphenyl)-4′-pentadecylphenyl]ethane. Polym Int 59:1408

    Google Scholar 

  66. More AS, Wadgaonkar PP (2008) U.S. US7446234B2

    Google Scholar 

  67. More AS (2009) Ph.D. thesis, University of Pune, India

    Google Scholar 

  68. Bhavsar GA, Asha SK (2011) Pentadecyl Phenol- and Cardanol-Functionalized Fluorescent, Room-Temperature Liquid-Crystalline Perylene Bisimides: effect of pendant chain unsaturation on self-assembly. Chem Eur J 17:12646

    Google Scholar 

  69. Ramasri M, Srinivasa Rao GS, Sampatkumaran PS, Shirsalkar MM (1987) Synthesis & Identification of 1,8-Bis(hydroxyphenyl)pentadecane from 3-Δ8-Pentadecenylphenol. Ind J Chem 26B:683

    Google Scholar 

  70. Sadavarte NV, Halhali MR, Avadhani CV, Wadgaonkar PP (2009) Synthesis and characterization of new polyimides containing pendent pentadecyl chains. Eur Polym J 45:582

    Google Scholar 

  71. Sadavarte NV, Avadhani CV, Wadgaonkar PP (2011) Synthesis and characterization of new organosoluble aromatic polyamides and polyazomethines containing pendent pentadecyl chains. High Perform Polym 23:494

    Google Scholar 

  72. Ghatge ND, Maldar NN (1984) Polyimides from dianhydride and diamine: structure property relations by thermogravimetric analysis (t.g.a.). Polymer 25:1353

    Google Scholar 

  73. Mathew JS, Vernekar SP, Mercier R, Kerboua R (2002) U.S. Patent US6500913B2

    Google Scholar 

  74. Mathew JS (2001) Ph.D. thesis, University of Pune, India

    Google Scholar 

  75. More AS, Sane PS, Patil AS, Wadgaonkar PP (2010) Synthesis and characterization of aromatic polyazomethines bearing pendant pentadecyl chains. Polym Degrad Stab 95:1727

    Google Scholar 

  76. Shingte RD, Wadgaonkar PP (2004) U.S. US6790993B1

    Google Scholar 

  77. Sadavarte NV, Avadhani CV, Naik PV, Wadgaonkar PP (2010) Regularly alternating poly(amideimide)s containing pendent pentadecyl chains: synthesis and characterization. Eur Polym J 46:1307

    Google Scholar 

  78. Tawade BV, Kulkarni AD, Wadgaonkar PP (2015) Synthesis and characterization of polyetherimides containing multiple ether linkages and pendent pentadecyl chains. Polym Int 64:1770

    Google Scholar 

  79. Jadhav AS, Vernekar SP, Maldar NN (1993) Synthesis and characterization of new aromatic sulfone ether polyamides containing pendant pentadecyl groups. Polym Int 32:5

    Google Scholar 

  80. More AS, Pasale SK, Wadgaonkar PP (2010) Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur Polym J 46:557

    Google Scholar 

  81. Sadavarte NV, Patil SS, Avadhani CV, Wadgaonkar PP (2013) New organosoluble aromatic poly(esterimide)s containing pendent pentadecyl chains Synthesis and characterization. High Perform Polym 25:735

    Google Scholar 

  82. More AS, Patil AS, Wadgaonkar PP (2010) Poly(amideimide)s containing pendant pentadecyl chains: synthesis and characterization. Polym Degrad Stab 95:837

    Google Scholar 

  83. More AS, Menon SK, Wadgaonkar PP (2012) New poly(1,3,4-oxadiazole)s bearing pentadecyl side chains: synthesis and characterization. J Appl Polym Sci 124:1281

    Google Scholar 

  84. Seo S, Kim Y, You J, Sarwade BD, Wadgaonkar PP, Menon SK, More AS, Kim E (2011) Electrochemical fluorescence switching from a patternable poly(1,3,4-oxadiazole) thin film. Macromol Rapid Comm 32:637

    Google Scholar 

  85. Cyriac A, Amrutha SR, Jayakannan M (2008) Renewable resource-based poly (m-phenylenevinylene)s and their statistical copolymers: synthesis, characterization, and probing of molecular aggregation and forster energy transfer processes. J Polym Sci A Polym Chem 46:3241

    Google Scholar 

  86. Pillai CKS, Sherrington DC, Sneddon A (1992) Thermotropic liquid crystalline copolyester based on 8-(3-hydroxyphenyl) octanoic acid and p-hydroxybenzoic acid. Polymer 33:3968

    Google Scholar 

  87. Abraham S, Prasad VS, Pillai CKS, Ravindranathan M (2002) Copolyesters of hydroxyphenylalkanoic acids: synthesis and thermal properties of poly{(4-oxybenzoate)-co-[8-(3-oxyphenyl)octanoate]} and poly{(3-bromo-4-oxybenzoate)-co-[8-(3-oxyphenyl)octanoate]}. Polym Int 51:475

    Google Scholar 

  88. Lee DG, Chang VS (1978) Oxidation of hydrocarbons. 8. Use of dimethyl polyethylene glycol as a phase transfer agent for the oxidation of alkenes by potassium permanganate. J Org Chem 43:1532

    Google Scholar 

  89. Grubbs RH (2004) Olefin metathesis. Tetrahedron 60:7117

    Google Scholar 

  90. Astruc D (2005) The metathesis reactions: from a historical perspective to recent developments. New J Chem 29:42

    Google Scholar 

  91. Grubbs RH (2006) Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew Chem Int Ed 45:3760

    Google Scholar 

  92. Martina F (2008) Ph.D. thesis, University of Salento, Italy

    Google Scholar 

  93. Vasapollo G, Mele G, Sole RD (2011) Cardanol-based materials as natural precursors for olefin metathesis. Molecules 16:6871

    Google Scholar 

  94. Bloise E, Carbone L, Colafemmina G, D’Accoltil L, Mazzetto SE, Vasapollo G, Mele G (2012) First example of a lipophilic porphyrin-cardanol hybrid embedded in a cardanol-based micellar nanodispersion. Molecules 17:12252

    Google Scholar 

  95. Attanasi OA, Ciccarella G, Filippone P, Mele G, Spadavecchia J, Vasapollo G (2003) Novel phthalocyanines containing cardanol derivatives. J Porphyrins Phthalocyanins 7:52

    Google Scholar 

  96. Mgaya JE, Bartlett SA, Mubofu EB, Mgani QA, Slawin AMZ, Porgorzelec PJ, Cole-Hamilton DJ (2016) Synthesis of bifunctional monomers by the palladium-catalyzed carbonylation of cardanol and its derivatives. Chem Cat Chem 8:751

    Google Scholar 

  97. Cassidy PE (1980) Thermally stable polymers: synthesis and properties. Mercel Dekker Inc, New York

    Google Scholar 

  98. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perform Polym 15:3

    Google Scholar 

  99. Dautel OJ, Wantz G, Flot D, Lere-Porte J-P, Moreau JJE, Parneix J-P, Serein-Spirau F, Vignau L (2005) Confined photoactive substructures on a chiral scaffold: the design of an electroluminescent polyimide as material for PLED. J Mater Chem 15:4446

    Google Scholar 

  100. Jung M-S, Lee T-W, Hyeon-Lee J, Sohn BH, Jung I-S (2006) Synthesis and characterizations of a polyimide containing a triphenylamine derivative as an interlayer in polymer light-emitting diode. Polymer 47:2670

    Google Scholar 

  101. Kausar AS, Zulfiqar S, Ahmad Z, Sarwar MI (2010) Novel processable and heat resistant poly(phenylthiourea azomethine imide)s: Synthesis and characterization. Polym Degrad Stab 95:1826

    Google Scholar 

  102. Rubal M, Jr Wilkins CW, Cassidy PE, Lansford C, Yamada Y (2008) Fluorinated polyimide nanocomposites for CO2/CH4separation. Polym Adv Technol 19:1033

    Google Scholar 

  103. Zhang B, Li W, Yang J, Fu Y, Xie Z, Zhang S, Wang L (2009) Performance enhancement of polymer light-emitting diodes by using ultrathin fluorinated polyimide modifying the surface of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). J Phys Chem C 113:7898

    Google Scholar 

  104. Ulmer II CW, Smith DA, Sumpter BG, Noid DI (1998) Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates. Comput Theor Polym Sci 8:311

    Google Scholar 

  105. Dove AP, Meier MAR (2014) Step-growth polymerization in the 21st century. Macromol Chem Phys 215:2135

    Google Scholar 

  106. Mittal KL (ed) (2001) Polyimides and other high temperature polymers: synthesis, characterisation and applications. VSP, Boston

    Google Scholar 

  107. Volksen W (1994) Condensation polyimides: synthesis, solution behavior, and imidization characteristics. Adv Polym Sci 117:111

    Google Scholar 

  108. Wallace JS, Arnold FE, Tan LS (1987) In situ rigid-rod aromatic polyimides. Am Chem Soc Polym Prepr 28:316

    Google Scholar 

  109. St. Clair TL, Wilson D, Stenzenberger HD, Hergenrother PM (eds) (1990) Polyimides. Chapman and Hall, New York

    Google Scholar 

  110. Sato M (1997) Polyimides. In: Olabisi O (ed) Handbook of thermoplastics. Marcel Dekker, New York, p 665

    Google Scholar 

  111. Yeganeh H, Tamami B, Ghazi I (2004) A novel direct method for preparation of aromatic polyimides via microwave-assisted polycondensation of aromatic dianhydrides and diisocyanates. Eur Polym J 40:2059

    Google Scholar 

  112. Imai Y, Kojima K (1972) Preparation of polyimides from pyromellitic dithioanhydride and aromatic diamines. J Polym Sci A Polym Chem 10:2091

    Google Scholar 

  113. Bella SD, Consiglio G, Leonardi N, Failla S, Finocchiaro P, Fragala I (2004) Film polymerization−a new route to the synthesis of insoluble polyimides containing functional nickel(II) schiff base units in the main chain. Eur J Inorg Chem 2004:2701

    Google Scholar 

  114. Gheneim R, Perez-Berumen C, Gandini A (2002) Diels−Alder reactions with novel polymeric dienes and dienophiles: s ynthesis of reversibly cross-linked elastomers. Macromolecules 35:7246

    Google Scholar 

  115. Chi JH, Shin GJ, Kim YS, Jung JC (2007) Synthesis of new alicyclic polyimides by Diels-Alder polymerization. J Appl Polym Sci 106:3823

    Google Scholar 

  116. Munoz DM, de la Campa JG, de Abajo J, Lozano AE (2007) Experimental and theoretical study of an improved activated polycondensation method for aromatic polyimides. Macromolecules 40:8225

    Google Scholar 

  117. Yang HH (1989) Aromatic high-strength fibers. Wiley Interscience, New York

    Google Scholar 

  118. Fink JK (2008) High performance polymers. William Andrew Inc, Burlington

    Google Scholar 

  119. Volbracht L (1989) Aromatic Polyimides In: Allen G, Bevington B, Eastmond GV, Ledwith-A, Russo S, Sigwald P (eds) Comprehensive polymer science, vol 5. Pergamon Press, Oxford, p 373

    Google Scholar 

  120. Shockravi A, Abouzari-Lotf E, Javadi A, Atabaki F (2009) Preparation and properties of new ortho-linked polyamide-imides bearing ether, sulfur, and trifluoromethyl linkages. Eur Polym J 45:1599

    Google Scholar 

  121. Sarkar A, More AS, Wadgaonkar PP, Shin GJ, Jung JC (2007) Synthesis and liquid-crystal-aligning properties of novel aromatic poly(amide imide)s bearing n-alkyloxy side chains. J Appl Polym Sci 105:1793

    Google Scholar 

  122. Behniafar H, Haghighat S (2006) Preparation and properties of aromatic poly(amide-imide)s derived from N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride. Eur Polym J 42:3236

    Google Scholar 

  123. Yang C-P, Chen Y-P, Woo EM (2004) Thermal behavior of 1,4-bis(4-trimellitimido-2-trifluoromethyl phenoxy)benzene (DIDA) solvated with polar organic solvents and properties of DIDA-based poly(amide-imide)s. Polymer 45:5279

    Google Scholar 

  124. Liaw D-J, Chen W-H (2003) Synthesis and characterization of new soluble cardo poly(amide–imide)s derived from 2,2-bis[4-(4-trimellitimidophenoxy)phenyl]norbornane. Polymer 44:3865

    Google Scholar 

  125. Lee C, Iyer NP, Min K, Pak H, Han H (2004) Synthesis and characterization of novel poly(amide-imide)s containing 1,3-diamino mesitylene moieties. J Polym Sci A Polym Chem 42:137

    Google Scholar 

  126. Behniafar H, Banihashemi A (2004) Synthesis and characterization of new soluble and thermally stable aromatic poly(amide-imide)s based on N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide. Eur Polym J 40:1409

    Google Scholar 

  127. Abid S, Gharbi RE, Gandini A (2004) Polyamide-imides bearing furan moieties. 1. Solution polycondensation of aromatic dianhydrydes with 2-furoic acid dihydrazides. Polymer 45:6469

    Google Scholar 

  128. Sarkar A, Honkhambe PN, Avadhani CV, Wadgaonkar PP (2007) Synthesis and characterization of poly(amideimide)s containing pendent flexible alkoxy chains. Eur Polym J 43:3646

    Google Scholar 

  129. Privalko VP, Mudrak CV, Privalko EG, Usenko AA, Karpova IL (2001) Structure-property relationships for film-forming poly(amide imide)s. Macromol Symp 175:403

    Google Scholar 

  130. Tussot CM, Sagnier C, Pham Q-T (2001) Tolylene diisocyanate-based poly(imido-amide)s, 2. Distributions of amide and imide groups in ternary poly(imido-amide)s containing terephthalic acid studied by 1H and 13C NMR. Macromol Chem Phys 202:1071

    Google Scholar 

  131. Hong Y-T, Jin MY, Suh DM, Lee J-H, Choi K-Y (1997) New preparation method of poly(amide-imide)s using direct polycondensation with thionyl chloride and their characterization. Angew Makromol Chem 248 :105

    Google Scholar 

  132. Kakimoto M-A, Akiyama R, Negi YS, Imai Y (1988) Synthesis and characterization of aromatic polyimide and polyamide-imide from 2,5-bis(4-isocyanatophenyl)-3,4-diphenylthiophene and aromatic tetra- and tricarboxylic acids. J Polym Sci A Polym Chem 26:99

    Google Scholar 

  133. Imai Y, Maldar NN, Kakimoto M-A (1985) Synthesis and characterization of aromatic polyamide-imides from 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene and 4-chloroformylphthalic anhydride. J Polym Sci A Polym Chem 23:2077

    Google Scholar 

  134. Grigoras M, Catanescu CO, Simionescu CI (2001) Poly(azomethine)s. Rev Roum Chim 46:927

    Google Scholar 

  135. Grigoras M, Catanescu CO (2004) Imine oligomers and polymers. J Macromol Sci C Polym Rev C44:131

    Google Scholar 

  136. Grigoras M, Cianga I, Farcas A, Nastase G, Ivanoiu M (2000) Fully conjugated and soluble polyazomethines containing 1,1′-binaphtyl groups. Rev Roum Chim 45:703

    Google Scholar 

  137. Bagheri M, Entezami A (2002) Synthesis of polymers containing donor–acceptor Schiff base in side chain for nonlinear optics. Eur Polym J 38:317

    Google Scholar 

  138. Dutta PK, Jain P, Sen P, Trivedi R, Sen PK, Dutta J (2003) Synthesis and characterization of a novel polyazomethine ether for NLO application. Eur Polym J 39:1007

    Google Scholar 

  139. Suh SC, Shim SC (2000) Synthesis and properties of a novel polyazomethine, the polymer with high photoconductivity and second-order optical nonlinearity. Synth Metals 114:91

    Google Scholar 

  140. Iwan A, Sek D (2008) Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci 33:289

    Google Scholar 

  141. Morgan PW, Kwolek SL, Pletcher TC (1987) Aromatic azomethine polymers and fibers. Macromolecules 20:729

    Google Scholar 

  142. Rudzinski WE, Guthrie SR, Cassidy PE (1988) Poly(Schiff base) polymers based on substituted biphenyl. J Polym Sci A Polym Chem 26:1677

    Google Scholar 

  143. Banerjee S, Gutch PK, Saxena C (1995) Polyether azomethines. I. Synthesis and characterization. J Polym Sci A Polym Chem 33:1719

    Google Scholar 

  144. Park KH, Tani T, Kakimoto M, Imai Y (1998) Synthesis and characterization of new diphenylfluorene-based aromatic polyazomethines. Macromol Chem Phys 199:1029

    Google Scholar 

  145. Chen Y, Yang Y, Su J, Tan L, Wang Y (2007) Preparation and characterization of aliphatic/aromatic copolyesters based on bisphenol-A terephthalate, hexylene terephthalate and lactide mioties. React Funct Polym 67:396

    Google Scholar 

  146. Chern Y-T, Huang C-M (1998) Synthesis and characterization of new polyesters derived from 1,6- or 4,9-diamantanedicarboxylic acyl chlorides with aryl ether diols. Polymer 39:2325

    Google Scholar 

  147. Bertini F, Zuev VV (2006) Investigation of the thermal degradation of fully aromatic regular polyesters: Poly(oxy-1,4-phenyleneoxy-fumaroyl-bis-4-oxybenzoate). Polym Degrad Stab 91:3214

    Google Scholar 

  148. Mallakpour S, Meratian S (2008) Synthesis and characterization of organosoluble optically active poly(ester-imide)s derived from trimellitic anhydride, L-methionine and bisphenols. High Perform Polym 20:3

    Google Scholar 

  149. Maiti S, Das S (1980) Synthesis and properties of a new polyesterimide. Angew Makromol Chem 86:181

    Google Scholar 

  150. Lienert KW (1999) Poly(ester-imide)s for Industrial Use. Adv Polym Sci 141:45

    Google Scholar 

  151. Yang C-P, Chiang H-C, Chen R-S (2003) Synthesis and characterization of organosoluble poly(arylate-imide)s prepared from direct polycondensation of bis(trimellitimide)-diacids and various bisphenols. J Appl Polym Sci 89:3818

    Google Scholar 

  152. Mulvaney JE, Figueroa FR, Wu SJ (1986) Polymers from 4,4′-sulfonyldiphenol. J Polym Sci A Polym Chem 24:613

    Google Scholar 

  153. Yang J-W, Wang C-S (1999) Novel perfluorononenyloxy group-containing polyimides. Polymer 40:1411

    Google Scholar 

  154. Schmidt K, Wille D (1971) U.S. Patent US3562219A

    Google Scholar 

  155. Shen DC (1982) U.S. Patent US4362861

    Google Scholar 

  156. Dolui SK, Pal D, Maiti S (1985) Synthesis of a novel polyesterimide. J Appl Polym Sci 30:3867

    Google Scholar 

  157. Maiti S, Das S (1981) Synthesis and properties of polyesterimides and their isomers. J Appl Polym Sci 26:957

    Google Scholar 

  158. Li C-H, Chen C-C, Chen K-M (1994) Studies on the synthesis and properties of copolyesterimide. J Appl Polym Sci 52:1751

    Google Scholar 

  159. Li C-H, Chen C-C, Chen K-M, Chang T-C (1995) Studies on the synthesis and properties of soluble homo- and copolyester–imide derived from imide–diacid. J Appl Polym Sci 55:747

    Google Scholar 

  160. Kurita K, Koyama Y, Mikawa N, Kaneda K, Murakoshi H (1989) Polymers based on p-aminophenol. 5. New synthetic route to wholly aromatic polyimide-ester. J Polym Sci C Polym Lett 27:115

    Google Scholar 

  161. Kurita K, Mikawa N, Koyama Y, Nishimura S (1990) Polymers based on p-aminophenol. 6. Facile synthesis of the simplest wholly aromatic poly(imide-ester) by pyrolytic polymerization of monomers containing preformed ester linkages. Macromolecules 23:2605

    Google Scholar 

  162. Li C-H, Jung A, Liang A-L, Chang T-C (1995) Studies on the synthesis and properties of thermotropic liquid crystalline copoly(amide–ester–imide) derived fromN-(hydroxyphenyl)phthalimide-4-carboxylic acid with amino acid. J Appl Polym Sci 56:1661

    Google Scholar 

  163. Johnson RN, Farnham AG (1967) Poly(aryl ethers) by nucleophilic aromatic substitution. III. Hydrolytic side reactions. J Polym Sci A Polym Chem 5:2415

    Google Scholar 

  164. Mandal BK, Maiti S (1986) Displacement polymerization—V. Synthesis and characterization of polyarylethers containing furoxan and furazan units. Eur Polym J 22:447

    Google Scholar 

  165. Cotter RJ (1995) Engineering thermoplastics, a handbook of poly(aryleneether)s. Gordon and Breach, Postfach

    Google Scholar 

  166. Chen M, Gibson HW (1996) Large-sized macrocyclic monomeric precursors of poly(ether ether ketone): Synthesis and Polymerization. Macromolecules 29:5502

    Google Scholar 

  167. Xie D, Gibson HW (1996) A 40-membered cyclic arylene ether sulfone from bisphenol-A: improved synthesis and properties. Macromol Chem Phys 197:2133

    Google Scholar 

  168. Kricheldorf HR, Delius U, Tonnes KU (1988) New polymer syntheses. 14.  New crystalline and amorphous aromatic poly(ether ketone)​s. New Polym Mater 1:127

    Google Scholar 

  169. Colon I, Kwiatkowski GT (1990) High molecular weight aromatic polymers by nickel coupling of aryl polychlorides. J Polym Sci A Polym Chem 28:367

    Google Scholar 

  170. Frazer AH, Wallenberger FT (1964) Poly(1,3,4-oxadiazole) fibers: new fibers with superior high temperature resistance. J Polym Sci A Polym Chem 2:1171

    Google Scholar 

  171. Frazer AH, Sarasohn IM (1966) Thermal behavior of polyhydrazides and poly-1,3,4-oxadiazoles. J Polym Sci A Polym Chem 4:1649

    Google Scholar 

  172. Frazer AH, Wallenberger FT (1964) Poly(1,3,4-oxadiazolidine). J Polym Sci A General Papers 2:1181

    Google Scholar 

  173. Sava I, Schulz B, Zhu S, Bruma M (1995) Synthesis and characterization of new silicon-containing poly(arylene-1,3,4-oxadiazole)s. High Perform Polym 7:493

    Google Scholar 

  174. Iwakura Y, Uno K, Hara S (1965) Poly-l,3,4-oxad.iazoles.I.Polyphenylene-1,3,4-oxadiazoles. J Polym Sci A Polym Chem 3:45

    Google Scholar 

  175. Hensema ER, Boom JP, Mulder MHV, Smolders CA (1994) Two reaction routes for the preparation of aromatic polyoxadiazoles and polytriazoles: Syntheses and properties. J Polym Sci A Polym Chem 32:513

    Google Scholar 

  176. Schulz B, Leibnitz E (1992) Aromatic poly(oxadiazole)s–new aspects of their synthesis, structures and properties. Acta Polym 43:343

    Google Scholar 

  177. Mythili CV, Retna AM, Gopalakrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. Bull Mater Sci 27:235

    Google Scholar 

  178. Ionescu M, Wan X, Bilic N, Petrovic ZS (2012) Polyols and rigid polyurethane foams from cashew nut shell liquid. J Polym Environ 20:647

    Google Scholar 

  179. Suresh KI (2013)  Rigid polyurethane foams from cardanol: synthesis, structural characterization, and evaluation of polyol and foam properties.ACS Sustainable Chem Eng 1:232

    Google Scholar 

  180. Kathalewar M, Sabnis A (2014) Preparation of novel CNSL-based urethane polyol via nonisocyanate route: curing with melamine-formaldehyde resin and structure–property relationship. J Appl Polym Sci 131:41391

    Google Scholar 

  181. Suresh KI, Kishanprasad VS (2005)  Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Ind Eng Chem Res 44:4504

    Google Scholar 

  182. Mohapatra S, Mohanty N, Guru BN, Pal NC (2014) The synthesis and FTIR, kinetics and TG/DTG/dta study of biopolymers derived from polyurethanes of glycerol modified linseed oil and cardanol based dyes. J Chem Pharm Res 6:1493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash P. Wadgaonkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chatterjee, D. et al. (2017). Step-Growth Polymers from Cashew Nut Shell Liquid (CNSL)-Based Aromatic Difunctional Monomers. In: Anilkumar, P. (eds) Cashew Nut Shell Liquid. Springer, Cham. https://doi.org/10.1007/978-3-319-47455-7_9

Download citation

Publish with us

Policies and ethics