Skip to main content

Cardanol-Derived-Amphiphiles-Based Soft Templates for Conducting Polymer Nanoarchitectures

  • Chapter
  • First Online:

Abstract

In recent times, there is a growing trend among researchers in utilizing plant based starting materials to synthesize functional nanomaterials. Toward this goal, cashew nut shell oil-derived cardanol caught great attention due to its wide availability, low cost, easy isolation and unique molecular architecture. In this chapter, we summarize the literature based on soft template approach of cardanyl amphiphiles for fabricating conducting polymer (polyaniline and polypyrrole) nanostructures. The amphiphiles synthesized from cardanol has typical surfactant structure with sulfonic acid polar head and hydrophobic aliphatic tail, often referred as dopants due to its post-polymerization doping effect on polymer chain. The soft- templates were generated by selectively mixing monomer and dopants for different polymerization conditions such as emulsion, dilute, interfacial, dispersion and gel phase. The templates upon treatment with polymerization initiator produce conducting polymer morphology such as nanofibers, nanorods, nanotubes, nanospheres, hollow nanospheres and nanotapes. The cardanyl amphiphilic dopants electrostatically complex with conducting polymer nanomaterials and significantly improve the solubility, solid-state ordering, conductivity and optical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kiess HG (ed) (1992) Conjugated conducting polymers. Springer, Berlin

    Google Scholar 

  2. Brédas JL, Silbey R (eds) (1991) Conjugated polymers. Springer, Dordrecht

    Google Scholar 

  3. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (nobel lecture) copyright((c)) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. Angew Chem Int Ed Engl 40:2581–2590

    Article  Google Scholar 

  4. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (nobel lecture) copyright((c)) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. Angew Chem Int Ed Engl 40:2574–2580

    Article  Google Scholar 

  5. MacDiarmid AG, Mammone RJ, Kaner RB et al (1985) The concept of `doping’ of conducting polymers: the role of reduction potentials [and discussion]. Philos Trans R Soc A Math Phys Eng Sci 314:3–15

    Article  Google Scholar 

  6. Prasanna Chandrashekar (1999) Conducting polymers, fundamentals and applications: a practical approach. Springer, Berlin

    Google Scholar 

  7. Skotheim TA, Reynolds J (2006) Conjugated polymers: theory, synthesis, properties, and characterization. Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  8. Müllen K, Reynolds JR, Masuda T (eds) (2013) Conjugated polymers. Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Heeger AJ, Sariciftci NS, Namdas EB (2011) Semiconducting and metallic polymers. Oxford Univ Press 21:391–393

    Google Scholar 

  10. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl Chem 74:857–867

    Article  Google Scholar 

  11. Goto H, Yoneyama H, Togashi F et al (2008) Preparation of conducting polymers by electrochemical methods and demonstration of a polymer battery. J Chem Educ 85:1067

    Article  Google Scholar 

  12. Inzelt G (2012) Conducting polymers. Springer, Berlin

    Book  Google Scholar 

  13. Zhang X, Lee J-S, Lee GS et al (2006) Chemical synthesis of PEDOT nanotubes. Macromolecules 39:470–472

    Article  Google Scholar 

  14. Huang L, Wang Z, Wang H et al (2002) Polyaniline nanowires by electropolymerization from liquid crystalline phases. J Mater Chem 12:388–391

    Article  Google Scholar 

  15. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397

    Article  Google Scholar 

  16. Kang E (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  Google Scholar 

  17. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317

    Article  Google Scholar 

  18. Kar P (2013) Doping in conjugated polymers. In: Polymer science and plastics engineering. Wiley, New York

    Google Scholar 

  19. Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290

    Article  Google Scholar 

  20. MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Synth Met 69:85–92

    Article  Google Scholar 

  21. Brédas JL, Chance RR, Silbey R (1982) Comparative theoretical study of the doping of conjugated polymers: polarons in polyacetylene and polyparaphenylene. Phys Rev B 26:5843–5854

    Article  Google Scholar 

  22. Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18:309–315

    Article  Google Scholar 

  23. Cho YS, Yoon KH (2001) Handbook of advanced electronic and photonic materials and devices. Elsevier, Amsterdam

    Google Scholar 

  24. Lee K, Cho S, Heum Park S et al (2006) Metallic transport in polyaniline. Nature 441:65–68

    Article  Google Scholar 

  25. Huang K, Qiu H, Wan M (2002) Synthesis of highly conducting polyaniline with photochromic azobenzene side groups. Macromolecules 35:8653–8655

    Article  Google Scholar 

  26. Ng SW, Neoh KG, Sampanthar JT et al (2001) Conversion of polyaniline from insulating to conducting state in aqueous viologen solutions. J Phys Chem B 105:5618–5625

    Article  Google Scholar 

  27. Saxena V, Malhotra BD (2003) Prospects of conducting polymers in molecular electronics. Curr Appl Phys 3:293–305

    Article  Google Scholar 

  28. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  Google Scholar 

  29. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  Google Scholar 

  30. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Article  Google Scholar 

  31. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24

    Article  Google Scholar 

  32. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured polyaniline sensors. Chem - A Eur J 10:1314–1319

    Article  Google Scholar 

  33. Virji S, Fowler JD, Baker CO et al (2005) Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small 1:624–627

    Article  Google Scholar 

  34. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496

    Article  Google Scholar 

  35. Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem

    Google Scholar 

  36. Huang J, Kaner RB (2004) Flash welding of conducting polymer nanofibres. Nat Mater 3:783–786

    Article  Google Scholar 

  37. Jang J (2006) conducting polymer nanomaterials and their applications. pp 189–260

    Google Scholar 

  38. Prabhakar N, Arora K, Singh H, Malhotra BD (2008) Polyaniline based nucleic acid sensor. J Phys Chem B 112:4808–4816

    Article  Google Scholar 

  39. Yakuphanoglu F, Basaran E, Şenkal BF, Sezer E (2006) Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode. J Phys Chem B 110:16908–16913

    Article  Google Scholar 

  40. Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11

    Article  Google Scholar 

  41. Wan M (2008) Conducting polymers with micro or nanometer structure. Springer, Berlin Heidelberg

    Google Scholar 

  42. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499

    Article  Google Scholar 

  43. Sergeev GB (2006) Nanochemistry, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  44. Bandyopadhyay AK (2008) Nanomaterials, 1st edn. New Age, New Delhi

    Google Scholar 

  45. Brechignac C, Houdy P, Lahmani M (2007) Nanomaterials and nanochemistry. Springer, Berlin

    Book  Google Scholar 

  46. Wang ZM (2008) One-dimensional nanostructures, 1st edn. Springer, New York

    Book  Google Scholar 

  47. Nabok A (2005) Organic and inorganic nanostructures, 1st edn. Artec. Inc., Norwood, MA

    Google Scholar 

  48. Dai H (2001) Nanotube growth and characterization, 2nd edn. Springer, Berlin

    Google Scholar 

  49. Niemeyer CM, Mirkin CA (2004) Nanobiotechnology, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  50. Rao CNR, Muller A, Cheetham AK (2004) The chemistry of nanomaterials, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  51. Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99:1823–1848

    Article  Google Scholar 

  52. Ramakrishnan S (2005) Nanostructured polymers. The chemistry of nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 476–517

    Chapter  Google Scholar 

  53. Armes SP, Aldissi M, Hawley M et al (1991) Morphology and structure of conducting polymers. Langmuir 7:1447–1452

    Article  Google Scholar 

  54. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chemie Int Ed 46:5670–5703

    Article  Google Scholar 

  55. Martin CR (1995) Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res 28:61–68

    Article  Google Scholar 

  56. Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758

    Article  Google Scholar 

  57. Jackowska K, Bieguński AT, Tagowska M (2008) Hard template synthesis of conducting polymers: a route to achieve nanostructures. J Solid State Electrochem 12:437–443

    Article  Google Scholar 

  58. Qiu H, Zhai J, Li S et al (2003) Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv Funct Mater 13:925–928

    Article  Google Scholar 

  59. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926–2932

    Article  Google Scholar 

  60. Martin CR (1995) Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res 28:61–68

    Article  Google Scholar 

  61. Zhang X, Chan-Yu-King R, Jose A, Manohar SK (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met 145:23–29

    Article  Google Scholar 

  62. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20:2926–2932

    Article  Google Scholar 

  63. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126:4502–4503

    Article  Google Scholar 

  64. Wei Z, Wan M (2002) Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Adv Mater 14:1314–1317

    Article  Google Scholar 

  65. Carswell ADW, O’Rea EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125:14793–14800

    Article  Google Scholar 

  66. Li C, Hatano T, Takeuchi M, Shinkai S (2004) Polyaniline superstructures created by a templating effect of organogels. Chem Commun 20:2350

    Article  Google Scholar 

  67. Voirin C, Caillol S, Sadavarte NV et al (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162

    Article  Google Scholar 

  68. Phani Kumar P, Paramashivappa R, Vithayathil PJ et al (2002) Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 50:4705–4708

    Article  Google Scholar 

  69. Balachandran VS, Jadhav SR, Vemula PK, John G (2013) Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem Soc Rev 42:427–438

    Article  Google Scholar 

  70. John G, Masuda M, Okada Y et al (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–718

    Article  Google Scholar 

  71. Paul RK, Pillai C (2001) Thermal properties of processable polyaniline with novel sulfonic acid dopants. Polym Int 50:381–386

    Article  Google Scholar 

  72. Paul RK, Pillai CK (2000) Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends. Synth Met 114:27–35

    Article  Google Scholar 

  73. Paul RK, Pillai CKS (2001) Melt/solution processable polyaniline with functionalized phosphate ester dopants and its thermoplastic blends. J Appl Polym Sci 80:1354–1367

    Article  Google Scholar 

  74. Anilkumar P (2009) Self-assembled molecular templates for conducting polyaniline nanomaterials. Doctoral dissertation. Retrieved from http://ir.niist.res.in:8080/xmlui/handle/123456789/878

  75. AntonyMJ (2010) Self-organization approach for conducting polypyrrole and their copolymer nanomaterials. Doctoral dissertation. Retrieved from http://ir.niist.res.in:8080/xmlui/handle/123456789/159

  76. Anilkumar P, Jayakannan M (2006) New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22:5952–5957

    Article  Google Scholar 

  77. Anilkumar P, Jayakannan M (2007) Fluorescent tagged probing agent and structure-directing amphiphilic molecular design for polyaniline nanomaterials via self-assembly process. J Phys Chem C 111:3591–3600

    Article  Google Scholar 

  78. Anilkumar P, Jayakannan M (2009) Self-assembled cylindrical and vesicular molecular templates for polyaniline nanofibers and nanotapes. J Phys Chem B 113:11614–11624

    Article  Google Scholar 

  79. Anilkumar P, Jayakannan M (2010) A novel supramolecular organogel nanotubular template approach for conducting nanomaterials. J Phys Chem B 114:728–736

    Article  Google Scholar 

  80. Anilkumar P, Jayakannan M (2007) Single-molecular-system-based selective micellar templates for polyaniline nanomaterials: control of shape, size, solid state ordering, and expanded chain to coillike conformation. Macromolecules 40:7311–7319

    Article  Google Scholar 

  81. Anilkumar P, Jayakannan M (2008) Divergent nanostructures from identical ingredients: unique amphiphilic micelle template for polyaniline nanofibers, tubes, rods, and spheres. Macromolecules 41:7706–7715

    Article  Google Scholar 

  82. Anilkumar P, Jayakannan M (2008) Hydroxyl-functionalized polyaniline nanospheres: tracing molecular interactions at the nanosurface via vitamin C sensing. Langmuir 24:9754–9762

    Article  Google Scholar 

  83. Anilkumar P, Jayakannan M (2009) Large-scale synthesis of polyaniline nanofibers based on renewable resource molecular template. J Appl Polym Sci 114:3531–3541

    Article  Google Scholar 

  84. Antony MJ, Jayakannan M (2007) Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres. J Phys Chem B 111:12772–12780

    Article  Google Scholar 

  85. Antony MJ, Jayakannan M (2009) Self-assembled anionic micellar template for polypyrrole, polyaniline, and their random copolymer nanomaterials. J Polym Sci, Part B: Polym Phys 47:830–846

    Article  Google Scholar 

  86. Antony MJ, Jayakannan M (2010) Molecular template approach for evolution of conducting polymer nanostructures: tracing the role of morphology on conductivity and solid state ordering. J Phys Chem B 114:1314–1324

    Article  Google Scholar 

  87. Antony MJ, Jayakannan M (2011) Polyaniline nanoscaffolds for colorimetric sensing of biomolecules via electron transfer process. Langmuir 27:6268–6278

    Article  Google Scholar 

  88. Antony MJ, Jayakannan M (2011) Role of anionic micellar template on the morphology, solid-state ordering, and unusual conductivity trend in poly(aniline- co -pyrrole) nanomaterials. J Phys Chem B 115:6427–6436

    Article  Google Scholar 

  89. Jayakannan M, Anilkumar P, Sanju A (2006) Synthesis and characterization of new azobenzenesulfonic acids doped conducting polyaniline. Eur Polym J 42:2623–2631

    Article  Google Scholar 

Download references

Acknowledgements

MJA and PA are gratefully acknowledging UGC, New Delhi, for providing financial supports as research fellowships. Both the authors are indebted to their doctoral mentor Prof. Manickam Jayakannan, Associate professor, IISER, Pune, India, for his continuous guidance and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menachery Jinish Antony or Parambath Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antony, M.J., Anilkumar, P. (2017). Cardanol-Derived-Amphiphiles-Based Soft Templates for Conducting Polymer Nanoarchitectures. In: Anilkumar, P. (eds) Cashew Nut Shell Liquid. Springer, Cham. https://doi.org/10.1007/978-3-319-47455-7_6

Download citation

Publish with us

Policies and ethics