Skip to main content

Multi-technology Platforms (MTPs)

  • Chapter
  • First Online:
Integrative Production Technology

Abstract

The growing demand for individualized commodities requires new solutions for a highly flexible yet cost-efficient production. Hence, the research results described in this chapter address the question of how different manufacturing technologies could be combined and employed efficiently in industrial practice. Reaching across the whole field of Multi-Technology Platforms (MTPs) a generalized design methodology was examined. The resulting template-based procedure, combining function structure and technology chains, is introduced in the first section. Consecutively, the next section advances this approach by illustrating the incorporation of metrology into machine tools and MTPs. For technological validation, all newly-developed scientific approaches were successfully integrated into four demonstrator test beds located at the RWTH Aachen University: a Multi-Technology Machining Center, a Hybrid Sheet Metal Processing Center, a Conductive Friction Stir Welding Center and a laser-enhanced hybrid lathe. The economic efficiency of manufacturing technology integration is reviewed before a profitability assessment based on the aforementioned demonstrator test beds is performed. The chapter concludes with an outlook on future research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tönissen (2014).

References

  • Abele E, Liebeck T, Wörn A (2006) Measuring flexibility in investment decisions for manufacturing systems. CIRP Ann Manuf Technol 55(1):433–436. doi:10.1016/S0007-8506(07)60452-1

    Article  Google Scholar 

  • Alves LMM, Martins PAF (2012) Joining sheets to tubular profiles by tube forming. In: Davim JP (ed) Computational methods for optimizing manufacturing technology. IGI Global, pp 319–338

    Google Scholar 

  • Alves LMM, Dias EJ, Martins PAF (2011) Joining sheet panels to thin-walled tubular profiles by tube end forming. J Clean Prod 19(6–7):712–719. doi:10.1016/j.jclepro.2010.12.014

    Article  Google Scholar 

  • Ambrogio G, Filice L, Gagliardi F (2011) Enhancing incremental sheet forming performance using high speed. KEM 473:847–852. doi:10.4028/www.scientific.net/KEM.473.847

  • Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62(1):243–246. doi:10.1016/j.cirp.2013.03.053

    Article  Google Scholar 

  • Ambrogio G, Ingarao G, Gagliardia F, Di Lorenzo R (2014) Analysis of energy efficiency of different setups able to perform single point incremental forming (SPIF) processes. Proc CIRP 15:111–116

    Article  Google Scholar 

  • Amino H, Matsubara S, Lu Y (2004) Shaping method and apparatus of thin metal sheet. US patent 20040148997 A1. 05 Aug 2004

    Google Scholar 

  • Amino M, Mizoguchi M, Terauchi Y, Maki Trent (2014) Current status of “dieless” Amino’s incremental forming. Proc Eng 81:54–62

    Article  Google Scholar 

  • Arntz K, Brecher C, Bundschuh W, Deutges D, Eckert M, Emonts M et al (2011) Hybride Produktionstechnik. In: Brecher C, Klocke F, Schmitt R, Schuh G (eds) Wettbewerbsfaktor Produktionstechnik: Aachener Perspektiven. Aachener Werkzeugmaschinenkolloquium 2011. Shaker, Herzogenrath, pp 317–344

    Google Scholar 

  • Askari A, Silling S, London B, Mahoney M (2001) Modeling and analysis of friction stir welding processes. Friction Stir Weld Process 43–54

    Google Scholar 

  • Aste C, Weissteiner T (2013) Café 3440 am Pitztaler Gletscher – Wildspitzbahn, Österreich. Stahlbau 82(5):387–391. doi:10.1002/stab.201310055

    Article  Google Scholar 

  • Awang M (2007) Simulation of friction stir spot welding (FSSW) process: study of friction Phenomena. Dissertation, Department of Mechanical and Aerospace Engineering Morgantown, West Virginia

    Google Scholar 

  • Bachmann F et al (1999) Hybride Prozesse - Neue Wege zu anspruchsvollen Produkten. In: Eversheim W et al (eds) Aachener Werkzeugmaschinen Kolloquium - Wettbewerbsfaktor Produktionstechnik. Shaker, Aachen, pp 234–278

    Google Scholar 

  • Bachmann F, Loosen P, Poprawe R (2007) High power diode lasers—technology and applications. Springer, New York, pp 432–433

    Google Scholar 

  • Bailly D, Bambach M, Hirt G, Pofahl T, Della Puppa G, Trautz M (2015a) Investigation on the producibility of freeform Façade elements made of sheet metal as self-supporting structures by means of incremental sheet forming. 2nd European Steel Technology and Application Days and METEC Trade Fair, Steel Institute VDEh, Düsseldorf. 15 June 2015

    Google Scholar 

  • Bailly D, Bambach M, Hirt G, Pofahl T, Della Puppa G, Trautz M (2015b) Flexible manufacturing of double-curved sheet metal panels for the realization of self-supporting freeform structures. KEM 639:41–48. doi:10.4028/www.scientific.net/KEM.639.41

    Article  Google Scholar 

  • Bailly D, Conrads L, Hirt G (2015c) Hybrid sheet metal processing center. In: Tekkaya AE, Homberg W, Brosius A (eds) 60 excellent inventions in metal forming. Springer, Berlin Heidelberg, pp 143–148

    Google Scholar 

  • Balsamo A, Chimienti A, Desogus S, Grattoni P, Meda A, Nerino R et al (2005) A portable stereovision system for cultural heritage monitoring. CIRP Ann Manuf Technol 54(1):499–502. doi:10.1016/S0007-8506(07)60154-1

    Article  Google Scholar 

  • Bambach M, Voswinckel H, Hirt G (2014) A new process design for performing hole-flanging operations by incremental sheet forming. Proc Eng 81:2305–2310. doi:10.1016/j.proeng.2014.10.325

    Article  Google Scholar 

  • Bi G (2004) Identifizierung und Qualifizierung von prozessrelevanten Kenngrössen zur Überwachung und Regelung beim Laserstrahlauftragschweissen. Dissertation, RWTH Aachen University

    Google Scholar 

  • Bi G, Gasser A (2011) Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Proc 12

    Google Scholar 

  • Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R (2006) Identification and qualification of temperature signal for monitoring and control in laser cladding. Opt Lasers Eng 44(12):1348–1359

    Article  Google Scholar 

  • Birkhofer H (1980) Analyse und Synthese der Funktionen technischer Produkte. Dissertation, Techn. Universität Braunschweig

    Google Scholar 

  • Blau PJ (1996) Friction science and technology. In: Dekker M (ed) Mechanical engineering 100, New York

    Google Scholar 

  • Brecher C (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, Berlin

    Book  Google Scholar 

  • Brecher C (2012) Integrative production technology for high-wage countries. Springer, Berlin

    Book  Google Scholar 

  • Brecher C, Karlberger A (2010) Steuerungskonzept für ein hybrides Bearbeitungszentrum. In: Hybride Technologien in der Produktion, pp 78–93

    Google Scholar 

  • Brecher C, Hoffmann C, Karlberger A, Rosen C (2008) Multi-technology platform for hybrid metal processing. In: Mitsuishi M, Ueda K, Kimura F (eds) Manufacturing systems and technologies for the new frontier. The 41st CIRP conference on manufacturing systems, 26–28 May 2008, Tokyo, Japan. Springer, London, pp 425–428

    Google Scholar 

  • Brecher C, Esser M, Witt S (2009a) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607

    Article  Google Scholar 

  • Brecher C, Klocke F, Do-Khac D, Breitbach T, Spiegel M (2009b) Hybrides Bearbeitungszentrum für die Werkzeugfertigung: Prozessketten verkürzen. Spec Tooling 4:36–37

    Google Scholar 

  • Brecher C, Breitbach T, Do-Khac D (2012) Strategies and boundaries for cost efficient multi-technology machine tools. In: Proceedings of the 15th international conference on machine design and production. Turkey, pp 251–266

    Google Scholar 

  • Brecher C, Breitbach T, Do-Khac D, Bäumler S, Lohse W (2013a) Efficient utilization of production resources in the use phase of multi-technology machine tools. Prod Eng Res Devel 7(4):443–452. doi:10.1007/s11740-013-0455-5

    Article  Google Scholar 

  • Brecher C, Breitbach T, Do-Khac D, Bäumler S, Lohse W (2013b) Qualifying multi-technology machine tools for machining precision. In: 7th international conference and exhibition on design and production of machines and dies/molds, Antalya, Turkey, pp 159–168

    Google Scholar 

  • Brecher C, Breitbach T, du Bois-Reymond F (2013c) Qualifying laser-integrated machine tools with multiple workspaces for machining precision. In: Proceedings in manufacturing systems, Bukarest, Romania

    Google Scholar 

  • Breitbach T (2015) Auslegung und Bewertung laserintegrierter Bearbeitungszentren. Dissertation, RWTH Aachen University

    Google Scholar 

  • Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507. doi:10.1016/S0007-8506(07)60200-5

    Article  Google Scholar 

  • Chao Y, Qi X, Tang W (2003) Heat transfer in friction stir welding-experimental and numerical studies. Trans ASME 125:138–145

    Google Scholar 

  • Chapman MAV (2003) Limitations of laser diagonal measurements. Precision Eng 27(4):401–406. doi:10.1016/S0141-6359(03)00041-2

    Article  Google Scholar 

  • Chiron (2015) Mehrspindel-Bearbeitung. Der Multiplikator-Effekt: Mehr Spindeln, mehr Schneiden, mehr Profit. http://www.chiron.de/fileadmin/pdf/Bearbeitungstechnologien/Deutsch_3Korr.pdf. Accessed 18 Dec 2015

  • Choi D, Lee C, Ahn B, Choi J, Yeon Y, Song K, Hong S, Lee W, Kang K, Jung S (2011) Hybrid friction stir welding of high-carbon steel. J Mater Sci Technol 27(2):127–130

    Article  Google Scholar 

  • Choudhury SK, Mangrulkar KS (2000) Investigation of orthogonal turn-milling for the machining of rotationally symmetrical work pieces. J Mater Process Technol 99(1–3):120–128. doi:10.1016/S0924-0136(99)00397-0

    Article  Google Scholar 

  • Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183. doi:10.1016/j.msea.2012.06.076

    Article  Google Scholar 

  • Cristino VA, Montanari L, Silva MB, Atkins AG, Martins PAF (2014) Fracture in hole-flanging produced by single point incremental forming. Int J Mech Sci 83:146–154. doi:10.1016/j.ijmecsci.2014.04.001

    Article  Google Scholar 

  • Denkena B, Hollmann F (2013) Process machine interactions. Predicition and manipulation of interactions between manufacturing processes and machine tool structures. Springer, Berlin

    Google Scholar 

  • Denkena B, Müller C (2005) Komplettbearbeitung komplexer Werkstücke. In: Klaus Weinert (ed) Spanende Fertigung. Prozesse, Innovationen, Werkstoffe. Vulkan, Essen, pp 79–89

    Google Scholar 

  • Dickerson T, Shi Q, Shercliff H (2003) Heat flow into friction stir welding tools. In: Proceeding of the 4th international symposium on friction stir welding, Park City, Utah

    Google Scholar 

  • Diettrich J (2011) Koaxiale Strahlführungs- und -formungssysteme für die hybride Lasermaterialbearbeitung. Dissertation, RWTH Aachen University

    Google Scholar 

  • Dilthey U (2006) Schweisstechnische Fertigungsverfahren 1 - Schweiß- und Schneidtechnologien, 3rd edn. Springer, Berlin

    Google Scholar 

  • DIN (2009) DIN EN ISO 12004-2:2009-02: Metallische Werkstoffe - Bleche und Bänder - Bestimmung der Grenzformänderungskurve - Teil 2: Bestimmung von Grenzformänderungskurven im Labor

    Google Scholar 

  • DIN (2010) Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 2: KMG angewendet für Längenmessungen (DIN EN ISO 10360-2:2010-06)

    Google Scholar 

  • DMG Mori Seiki (2011) LASERTEC-Baureihe - Oberflächenstrukturieren, 3D-Abtragen, Feinschneiden und Bohren mit Laser. Corporate publication, DMG Mori Seiki, Stuttgart

    Google Scholar 

  • Duflou J, Verbert J, Tunckol Y, Gelaude F, Lauwers B (2005) Customised medical implant production by means of single point incremental forming. In: Proceedings of the 2nd international conference on manufacturing engineering, pp 217–225

    Google Scholar 

  • Duflou JR, Callebaut B, Verbert J, de Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. doi:10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  • Duflou JR, Callebaut B, Verbert J, de Baerdemaeker H (2008) Improved SPIF performance through dynamic local heating. Int J Mach Tools Manuf 48(5):543–549. doi:10.1016/j.ijmachtools.2007.08.010

    Article  Google Scholar 

  • Ehrlenspiel K, Kiewert A, Lindemann U (2007) Kostengünstig Entwickeln und Konstruieren. Kostenmanagement bei der integrierte Produktentwicklung. Springer, Heidelberg

    Google Scholar 

  • ElMaraghy H (2007) Reconfigurable process plans for responsive manufacturing systems. In: Cunha Pedro F, Maropoulos PG (eds) Digital enterprise technology. Perspectives and future challenges. Springer, Berlin,New York, pp 35–44

    Chapter  Google Scholar 

  • ElMaraghy H, Hoda A (2011) Enabling manufacturing competitiveness and economic sustainability. In: Proceedings of the 4th international conference on changeable, agile, reconfigurable and virtual production (CARV2011). Springer, Heidelberg

    Google Scholar 

  • ElMaraghy H, AlGeddawy T, Azab A (2008) Modelling evolution in manufacturing: a biological analogy. CIRP Ann Manuf Technol 57(1):467–472. doi:10.1016/j.cirp.2008.03.136

    Article  Google Scholar 

  • ElMaraghy W, ElMaraghy H, Tomiyam T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP Ann Manuf Technol 61(2):793–814. doi:10.1016/j.cirp.2012.05.001

    Article  Google Scholar 

  • Fahrenwaldt HJ, Schuler V (2006) Praxiswissen Schweißtechnik - Werkstoffe, Prozesse, Fertigung, 2nd edn. Vieweg, Wiesbaden

    Google Scholar 

  • Fahrenwaldt H, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik. Werkstoffe, Prozesse, Fertigung, 4th revised and reworked Edition. Springer, Wiesbaden

    Google Scholar 

  • Feiner A (2005) Werkzeugmaschinen für die Produktion von morgen im Spannungsfeld: flexibel und einfach, schnell und genau. In: Brecher C (ed) Wettbewerbsfaktor Produktionstechnik, Aachener Perspektiven. Shaker, Aachen, pp 373–409

    Google Scholar 

  • Franke HJ (1999) Ungelöste Probleme der Konstruktionsmethodik. In: Franke HJ (ed) Konstruktionsmethodik. Shaker, Aachen, pp 13–30

    Google Scholar 

  • Fujii H, Kato H, Nakata K, Nogi K (2008) Friction stir welding of high-temperature materials (Mo, Ti). In: Proceedings of the 6th international FSW symposium. Montreal, Canada, pp 10–13

    Google Scholar 

  • Fujii H, Tatsuno T, Tsumura T, Tanaka M, Nakata K (2008b) Hybrid friction stir welding of carbon steel. Mater Sci Forum 580–582:393–396

    Article  Google Scholar 

  • Garnich F (1992) Laserbearbeitung mit Robotern. Dissertation, TU München

    Google Scholar 

  • Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng Res Devel 5(3):263–271. doi:10.1007/s11740-011-0299-9

    Article  Google Scholar 

  • Göttmann A, Korinth M, Taleb Araghi B, Bambach M, Hirt G (2012) Manufacturing of cranial implants using incremental sheet metal forming. 02 May 2012

    Google Scholar 

  • Göttmann A, Bailly David, Bergweiler G, Bambach M, Stollenwerk J, Hirt G et al (2013a) A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol 67(9–12):2195–2205

    Google Scholar 

  • Göttmann A, Mertin C, Mosecker L, Naumov A, Bambach M (2013b) Properties of friction stir welded blanks made from DC04 mild steel and aluminum AA6016. Adv Mater Res 769:237–244. doi:10.4028/www.scientific.net/AMR.769.237

    Article  Google Scholar 

  • Goyal KK, Jain PK, Jain M (2013) A novel methodology to measure the responsiveness of RMTs in reconfigurable manufacturing system. J Manuf Syst 32(4):724–730. doi:10.1016/j.jmsy.2013.05.002

    Article  Google Scholar 

  • Grote KH, Feldhusen J (2011) Dubbel – Taschenbuch für den Maschinenbau, 21st edn. T Fertigungsmittel. Springer, Berlin, p 1343

    Google Scholar 

  • Grundler E (2002) Weg vom einfachen Drehteil - hin zur Komplettbearbeitung. In: VDI-Z Integrierte Produktion 144(11–12)

    Google Scholar 

  • GUM (1995) Guide to the expression of uncertainty in measurement. International Organization for Standardization, Genève

    Google Scholar 

  • Habedank G, Theiler C, Grupp M, Kohn H, Sepold G, Vollertsen F (2003) Laser beam cladding of steel with high power diode lasers. In: Proceedings of the second international WLT-conference on lasers in manufacturing, Munich, BIAS Bremer Institut für angewandte Strahltechnik GmbH

    Google Scholar 

  • Haferkamp H, Bach F, Gerken J, Ebsen H (1993) Laserstrahlauftragschweißen an Bauteilen für den industriellen Einsatz. Schweißen und Schneiden 45(9):513–515

    Google Scholar 

  • Hansen F (1965) Konstruktionssystematik, 2nd edn. VEB Verlag Technik, Berlin

    Google Scholar 

  • Heisel U, Richter F, Wurst KH (1997) Thermal behaviour of industrial robots and possibilities for error compensation. CIRP Ann Manuf Technol 46(1):283–286

    Article  Google Scholar 

  • Heller JE, Feldhusen J (2013) Enhanced function structure applicability through adaptive function template. In: ATINER’s conference paper series, Athens

    Google Scholar 

  • Heller JE, Löwer M, Feldhusen J (2014a) Rethinking morphological analysis application for concept synthesis in engineering design. In: ATINER’s conference paper series, Athens

    Google Scholar 

  • Heller JE, Schmid A, Löwer M, Feldhusen J (2014b) The Dilemma of morphological analysis in product concept synthesis—new approaches for industry and academia. In: International Design Conference (DESIGN 2014), Croatia

    Google Scholar 

  • Hernla M (2007) Messunsicherheit bei Koordinatenmessungen. Abschätzung der aufgabenspezifischen Messunsicherheit mit Hilfe von Berechnungstabellen. Expert, Renningen

    Google Scholar 

  • Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. Proc Eng 81:2330–2335. doi:10.1016/j.proeng.2014.10.329

    Article  Google Scholar 

  • Hinsch M, Heller JE, Feldhusen J (2012) Improved application of design methodology. Taking man-induced disturbances into account. In: Proceedings of the 14th internal conference on engineering and product design education E&PDE, Antwerp

    Google Scholar 

  • Hirt G, Ames J, Bambach M, Kopp R, Hirt G (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206. doi:10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  • Hirt G, Bambach M, Bailly D, Trautz M, Heyden HW, Herkrath R et al (2014) Untersuchung zur Herstellbarkeit von frei geformten Hüll- und Fassadenelementen als selbsttragende Struktur ohne Unterkonstruktion aus nichtrostendem Stahl mittels inkrementeller Blechumformung (IBU). Verlag und Vertriebsgesellschaft mbH, Düsseldorf

    Google Scholar 

  • Hubka V (1973) Theorie der Maschinensysteme. Grundlagen einer wissenschaftlichen Konstruktionslehre. Springer, Heidelberg

    Google Scholar 

  • ISO (1996) Test code for machine tools (ISO 230)

    Google Scholar 

  • ISO (2000) Geometrical product specifications (GPS). Acceptance and reverification tests for coordinate measuring machines (CMM) (ISO 10360)

    Google Scholar 

  • ISO (2012) Geometrical product specifications (GPS)—geometrical tolerancing—tolerances of form, orientation, location and run-out (ISO 1101)

    Google Scholar 

  • Jackson KP, Allwood JM, Landert M (2008) Incremental forming of sandwich panels. J Mater Process Technol 204(1–3):290–303

    Article  Google Scholar 

  • Jalizi M, Korff D, Rost R (2009) Alleskönner oder Teamplayer. Mehrtechnologiemaschinen versus Mehrmaschinenkonzepte. In: Werkstatt und Betrieb 10/2009: 12–17

    Google Scholar 

  • Janeczko J, Griffin B, Wang C (2000) Laser vector measurement technique for the determination and compensation of volumetric position errors. Part II: Experimental verification. Rev Sci Instrum 71(10):3938. doi:10.1063/1.1290505

  • Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):623–649

    Article  Google Scholar 

  • Jiang WH, Kovacevic R (2004) Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proc Inst Mech Eng Part B J Eng Manuf 218(10):1323–1331

    Article  Google Scholar 

  • Klocke F, Brecher C, Heinen D, Rosen C, Breitbach T (2010) Flexible scanner-based laser surface treatment. Laser Assist Net Shape Eng 6(5–1):467–475

    Google Scholar 

  • Klocke F, Heinen D, Schongen F, Arntz K, Bäcker V, Feldhaus B (2012) Wear protection of tools by local geometry and material optimization. In: 9th tooling conference/4th international conference on heat treatment of tools and dies, pp 613–620

    Google Scholar 

  • Knapp W (2002) Measurement uncertainty and machine tool testing. CIRP Ann Manuf Technol 51(1):459–462. doi:10.1016/S0007-8506(07)61560-1

    Article  Google Scholar 

  • Koller R (1998) Konstruktionslehre für den Maschinenbau. Grundlagen zur Neu- und Weiterentwicklung teschnischer Produkte. Springer, Berlin

    Book  Google Scholar 

  • Koller R, Kastrup N (1999) Prinziplösungen zur Konstruktion technischer Produkte. Springer, Berlin

    Google Scholar 

  • Koren Y (2010) The global manufacturing revolution, product-process-business integration and reconfigurable systems. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Koren Y (2013) The global manufacturing revolution. Product-process-business integration and reconfigurable systems. In: Wiley series in systems engineering and management 80. Wiley, Hoboken, NJ

    Google Scholar 

  • Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J Manuf Syst 29(4):130–141. doi:10.1016/j.jmsy.2011.01.001

    Article  Google Scholar 

  • Koren Y, Hu SJ, Weber TW (1998) Impact of manufacturing system configuration on performance. CIRP Ann Manuf Technol 47(1):369–372. doi:10.1016/S0007-8506(07)62853-4

    Article  Google Scholar 

  • Kozak J, Rajurkar K (2000) Hybrid machining process evaluation and development. In: Second international conference on machining and measurements of sculptured surfaces, pp 501–536

    Google Scholar 

  • Kroh R (2014) Vertikaldrehmaschine für die großvolumige Getriebeproduktion. In: MaschinenMarkt. http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/zerspanung/articles/455228/. Accessed 18 Dec 2015

  • KUKA Roboter GmbH (2004) Intelligenter roboter. http://www.kuka.com/nl_media/06/vortrag_intelligenter_roboter.pdf. Accessed 18 Dec 2015

  • Landolt-Börnstein (2009) New series VIII/2C1. In: Warlimont H (ed) Metal forming data of ferrous alloys—deformation behaviour. Springer, Berlin. doi:10.1007/978-3-540-44760-3_43

  • Lange K (1990) Umformtechnik - Handbuch für die Industrie und Wissenschaft (Blechbearbeitung, 3). Springer, Berlin

    Google Scholar 

  • Läpple V (2010) Wärmebehandlung des Stahls. Europa Lehrmittel (Bibliothek des technischen Wissens), pp 192-193

    Google Scholar 

  • Laugwitz M (2015) Prozessbeschleunigung und funktionale Erweiterung um formschlüssiges Fügen des inkrementellen Kragenziehens. Master thesis, RWTH Aachen University

    Google Scholar 

  • Lee G, Kim S (2012) Case study of mass customization of double-curved metal façade panels using a new hybrid sheet metal processing technique. J Constr Eng Manage 138(11):1322–1330. doi:10.1061/(ASCE)CO.1943-7862.0000551

    Article  MathSciNet  Google Scholar 

  • Leung MKH, Man HC, Yu JK (2007) Theoretical and experimental studies on laser transformation hardening of steel by customized beam. Int J Heat Mass Transf 50:4600–4606

    Article  MATH  Google Scholar 

  • Levin MS (2006) Composite systems decisions. Springer, London

    Google Scholar 

  • Levin MS (2012) Morphological methods for design of modular systems (a survey). In: Computing research repository

    Google Scholar 

  • Lindemann U, Ponn J (2008) Konzeptentwicklung und Gestaltung technischer Produkte. Springer, Heidelberg

    Google Scholar 

  • Livatyali H, Larris SJ (2004) Experimental investigation on forming defects in flat surface–convex edge hemming: roll, recoil and warp. J Mater Process Technol 153–154:913–919. doi:10.1016/j.jmatprotec.2004.04.425

    Article  Google Scholar 

  • Male A, Cockcroft M (1945) A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Met 215–233

    Google Scholar 

  • Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791. doi:10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  • Merklein M, Johannes M, Lechner M, Kuppert A (2014) A review on tailored blanks—production, applications and evaluation. J Mater Process Technol 214(2):151–164. doi:10.1016/j.jmatprotec.2013.08.015

    Article  Google Scholar 

  • Mertin C, Naumov A, Mosecker L, Bambach M, Hirt G (2014) Influence of the process temperature on the properties of friction stir welded blanks made of mild steel and aluminum. KEM 611–612:1429–1436. doi:10.4028/www.scientific.net/KEM.611-612.1429

    Article  Google Scholar 

  • Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming. State of the art and future trends. J Mater Process Technol 191(1–3):390–395

    Google Scholar 

  • Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78. doi:10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  • Montanari L, Cristino V, Silva M, Martins P (2014) On the relative performance of hole-flanging by incremental sheet forming and conventional press-working. Proc Inst Mech Eng Part L J Mater Des Appl 228(4):312–322. doi:10.1177/1464420713492149

    Google Scholar 

  • Moon YM, Kota S (2002) Generalized kinematic modeling of reconfigurable machine tools. J Mech Des 124(1):47. doi:10.1115/1.1424892

    Article  Google Scholar 

  • Moriwaki T (2008) Multi-functional machine tool. CIRP Ann Manuf Technol 57(2):736–749. doi:10.1016/j.cirp.2008.09.004

    Article  MathSciNet  Google Scholar 

  • Mosecker L, Göttmann A, Saeed-Akbari A, Bleck W, Bambach M, Hirt G (2013) Deformation mechanisms of Ti6Al4V sheet material during the incremental sheet forming with laser heating. KEM 549:372–380

    Article  Google Scholar 

  • Nandan R, Roy G, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans 1247–1259

    Google Scholar 

  • Neugebauer R, Altan T, Geiger M, Kleiner M, Sterzing A (2006) Sheet metal forming at elevated temperatures. CIRP Ann Manuf Technol 55(2):793–816. doi:10.1016/j.cirp.2006.10.008

    Article  Google Scholar 

  • Pahl G, Beitz W, Feldhusen J, Grote K (2013) Pahl/Beitz Konstruktionslehre -Methoden und Anwendung erfolgreicher Produktentwicklung. Springer, Heidelberg

    Google Scholar 

  • Partes K (2009) Analytical model of the catchment efficiency in high speed laser cladding. Surf Coat Technol 204(3):366–371. doi:10.1016/j.surfcoat.2009.07.041

    Article  Google Scholar 

  • Pearson SR, Shipway PH, Abere JO, Hewitt RAA (2013) The effect of temperature on wear and friction of a high strength steel in fretting. Wear 303(1–2):622–631

    Article  Google Scholar 

  • Petek A, Kuzman K (2012) Backward hole-flanging technology using an incremental approach. SV-JME 58(2):73–80. doi:10.5545/sv-jme.2011.194

    Article  Google Scholar 

  • Pogacnik M, Kopac J (2000) Dynamic stabilization of the turn-milling process by parameter optimization. Proc Inst Mech Eng Part B J Eng Manuf 214(2):127–135. doi:10.1243/0954405001517504

  • Popov V, Psakhie S, Shilko E, Dmitriev A, Knothe K, Bucher F, Ertz M (2002) Friction coefficient in rail-wheel contacts as a function of material and loading parameters. Phys Mesomech 17–24

    Google Scholar 

  • Rajurkar K, Zhu D, McGeough J, Kozak J, De Silva A (1999) New development in electro-chemical-machining. CIRP Ann 48(2):567–579

    Article  Google Scholar 

  • Reisgen U, Schleser M, Harms A, Schiebahn A, Naumov A (2011) Erweiterung des Parameterfelds zum Rührreibschweißen mittels konduktiver Unterstützung. In: Schweißen und Schneiden 63, DVS Media, Düsseldorf

    Google Scholar 

  • Reisgen U, Schleser M, Naumov A (2013) Temperaturgeregeltes Rührreibschweißen. In: DVS-Berichte 295. DVS Media, Düsseldorf

    Google Scholar 

  • Reisgen U et al (2014) Feasibility study on the use of adhesive fixation in conjunction with friction stir welding. Int J Eng Res 3(2)

    Google Scholar 

  • Rodenacker WG (1991) Methodisches Konstruieren: Grundlagen, Methodik, praktische Beispiele. Springer, Berlin

    Book  Google Scholar 

  • Roderburg A, Klocke F (2013) Methodik zur Entwicklung von hybriden Fertigungstechnologien. Apprimus, Aachen

    Google Scholar 

  • Röhr H (2010) CNC-Mehrspindler fertigen komplexe Automobilteile. In: maschinen anlagen verfahren (mav) Sonderdruck, July/August 2010

    Google Scholar 

  • Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 77–93

    Google Scholar 

  • Schmieder M, Mehrtens P (2013) Cladding freeform surfaces with curved metal panels—a complete digital production chain. In: Hesselgren L, Sharma S, Wallner J, Baldassini N (eds) Advances in architectural geometry 2012. Springer, Vienna, pp 237–242

    Chapter  Google Scholar 

  • Schmitt R, Peterek M (2015) Traceable measurements on machine tools—thermal influences on machine tool structure and measurement uncertainty. Proc CIRP 33:576–580. doi:10.1016/j.procir.2015.06.087

    Article  Google Scholar 

  • Schmitt R, Jatzkowski P, Peterek M (2013) Traceable measurements using machine tools. In: Blunt L (ed) Laser metrology and machine performance X. 10th international conference and exhibition on laser metrology, machine tool, CMM & Robotic Performance, Cranfield, pp 133–143

    Google Scholar 

  • Schmitz R (2015) Prozessoptimierung für die Herstellung mehrlagiger selbsttragender Freiformstrukturen mit einer Prozesskombination aus Streckziehen und Inkrementeller Blechumformung. Master thesis, RWTH Aachen University

    Google Scholar 

  • Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675. doi:10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  • Smid P (2003) CNC programming handbook: a comprehensive guide to practical CNC programming. Industrial Press. https://books.google.de/books?id=JNnQ8r5merMC. Accessed 18 Dec 2015

  • Siemens PLM Software (2010) Master the challenges of programming multi-function machines. http://m.plm.automation.siemens.com/en_us/Images/4746_tcm1224-54502.pdf. Accessed 18 Dec 2015

  • Siemens PLM Software (2015) RobotExpert fact sheet. Plug-n-Play software solution for robotics simulation and programming. https://m.plm.automation.siemens.com/en_us/Images/Siemens-PLM-Tecnomatix-RobotExpert-fs_tcm1224-190476.pdf. Accessed 18 Dec 2015

  • Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615. doi:10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  • Soriano C, Leunda J, Lambarri J, García Navas V, Sanz C (2011) Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Appl Surf Sci 257:7101–7106

    Article  Google Scholar 

  • Spicer P, Koren Y, Shpitalni M, Yip-Hoi D (2002) Design principles for machining system configurations. CIRP Ann Manuf Technol 51(1):275–280

    Article  Google Scholar 

  • Taleb Araghi B (2011) Inkrementelle Blechumformung und ihre Kombination mit Streckziehen - Grundlagen und Anwendungen. Dissertation, RWTH Aachen University

    Google Scholar 

  • Taleb Araghi B, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. CIRP Ann Manuf Technol 58(1):225–228. doi:10.1016/j.cirp.2009.03.101

    Article  Google Scholar 

  • Tang W, Guo X, McClure J, Murr L (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172

    Article  Google Scholar 

  • Tartakovsky A, Grant G, Sun X, Khalel M (2006) Modeling of friction stir welding (FSW) process with smoothed particle hydrodynamics (SPH). In: Proceeding of the 2006 SAE world congress, Michigan

    Google Scholar 

  • Thomas WM, Nicholas ED, Needham JC, Much MG, Temple-Smith P, Dawes CJ (1995) Friction welding. Patent registered by The Welding Institute (TWI). Patent no: 5,460,317

    Google Scholar 

  • Tolio T, Ceglarek D, ElMaraghy HA, Fischer A, Hu SJ, Laperrière L et al (2010) SPECIES—Co-evolution of products, processes and production systems. CIRP Ann Manuf Technol 59(2):672–693. doi:10.1016/j.cirp.2010.05.008

    Article  Google Scholar 

  • Tönissen S (2014) Economic efficiency of manufacturing technology integration. In: Technologie der Fertigungsverfahren 42/2014. Apprimus, Aachen

    Google Scholar 

  • Trapet E (1999) Traceability of coordinate measurements according to the method of the virtual measuring machine. Part 2 of the final report project MAT1-CT94-0076. PTB-Bericht F, 35, Bremerhaven

    Google Scholar 

  • Ulysse P (2002) Three-dimensional modeling of the friction stir welding process. Int J Mach Tools Manuf 1549–1557

    Google Scholar 

  • Vahdati AR, Vahdati M (2009) Applying a new method for incremental sheet metal forming with high speed. In: The Annals of “Dunarea De Jos” University of Galati Fascicle V, Technologies in Machine Building

    Google Scholar 

  • Vanhove H, Duflou JR (2015) Negative bulge formation in high speed incremental forming. KEM 639:173–178. doi:10.4028/www.scientific.net/KEM.639.173

    Article  Google Scholar 

  • VDI (1990) Montage- und Handhabungstechnik. Handhabungsfunktionen, Handhabungseinrichtungen, Begriffe, Definitionen, Symbole (VDI 2860)

    Google Scholar 

  • VDI (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte (VDI 2221)

    Google Scholar 

  • VDI (2004) Entwicklungsmethodik für mechatronische Systeme (VDI 2206)

    Google Scholar 

  • Vilar R (1999) Laser alloying and laser cladding. Deparamento de Engenharia de Materiais, Instituto Superior Tecnico

    Google Scholar 

  • Vollertsen F, Partes K, Meijer J (2005) State of the art of laser hardening and cladding. In: Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, Munich

    Google Scholar 

  • Voswinckel H, Bambach M, Hirt G (2015) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form 8(3):391–399. doi:10.1007/s12289-014-1182-y

    Article  Google Scholar 

  • Wang C (2000) Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: basic theory. Rev Sci Instrum 71(10):3933. doi:10.1063/1.1290504

  • Weck M, Brecher C (2006a) Werkzeugmaschinen 2: Konstruktion und Berechnung. Springer, Berlin

    Book  Google Scholar 

  • Weck M, Brecher C (2006b) Werkzeugmaschinen 4: Automatisierung von Maschinen und Anlagen. Springer, Berlin

    Book  Google Scholar 

  • Weinert K, Finke M, Johlen G (2001) Flexible Hartbearbeitung von Futterteilen durch Hartdrehen und Schleifen. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 96(9):463–467

    Google Scholar 

  • Welsch G, Bunk W (1982) Deformation modes of the α-phase of ti-6al-4v as a function of oxygen concentration and aging temperature. MTA 13(5):889–899. doi:10.1007/BF02642403

    Article  Google Scholar 

  • Wiendahl HP, Scholtissek P (1994) Management and control of complexity in manufacturing. CIRP Ann Manuf Technol 43(2):533–540. doi:10.1016/S0007-8506(07)60499-5

    Article  Google Scholar 

  • Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56(2):783–809. doi:10.1016/j.cirp.2007.10.003

    Article  Google Scholar 

  • Wilden J (2005) Beschichten mit dem Laserstrahl. Verschleiß- und Verschleißschutz von Schnecken und Zylindern für Extruder und Spritzgießmaschinen. M0-M26

    Google Scholar 

  • Yang L, Yang X, Lao D, Zhu J, Ye S (2010) Large-scale coordinates measurement method based on intersection of optical planes. Infrared Laser Eng 6:31

    Google Scholar 

  • Yao C, Xu B, Huang J, Zhang P, Wu Y (2010) Study on the softening in overlapping zone by laser-overlapping scanning surface hardening for carbon and alloyed steel. Opt Lasers Eng 48:20–26

    Article  Google Scholar 

  • Zhang HL, Li MZ, Fu WZ, Chen X (2011) Study of multi-point flexible floating clamping system of multi-roll stretch forming process. Adv Mater Res 291–294:282–285. doi:10.4028/www.scientific.net/AMR.291-294.282

    Article  Google Scholar 

  • Zhu Z, Shokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes—state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615

    Article  Google Scholar 

  • Zwicky F (1966) Entdecken, Erfinden, Forschen im Morphpologischen Weltbild. Droemer-Knaur, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brecher, C. et al. (2017). Multi-technology Platforms (MTPs). In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics