RASA: A Low-Cost Upper-Torso Social Robot Acting as a Sign Language Teaching Assistant

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9979)

Abstract

This paper presents the design characteristics of a new Robot Assistant for Social Aims (RASA), being an upper-torso humanoid robot platform currently under final stages of development. This project addresses the need for developing affordable humanoid platforms designed to be utilized in new areas of social robotics research, primarily teaching Persian Sign Language (PSL) to children with hearing disabilities. RASA is characterized by three features which are hard to find at the same time in today’s humanoid robots: its dexterous hand-arm systems enabling it to perform sign language, low development cost, and easy maintenance. In this paper, design procedures and considerations are briefly discussed and then the mechatronic hardware design of the robot is presented accordingly.

Keywords

Humanoid robot Design Hearing-impaired children Sign language 

References

  1. 1.
    Alemi, M., Meghdari, A., Ghazisaedy, M.: Employing humanoid robots for teaching English language in Iranian junior high-schools. Int. J. Humanoid Rob. 11(3), 1–25 (2014). doi: 10.1142/S0219843614500224
  2. 2.
    Alemi, M., Ghanbarzadeh, A., Meghdari, A., Moghadam, L.J.: Clinical application of a humanoid robot in pediatric cancer interventions. Int. J. Soc. Rob., 1–17 (2015). doi: 10.1007/s12369-015-0294-y
  3. 3.
    Meghdari, A., Alemi, M., Taheri, A.: The effects of using humanoid robots for treatment of individuals with autism in Iran. In: 6th Neuropsychology Symposium, Tehran, Iran (2013)Google Scholar
  4. 4.
    Mayberry, R.I.: Cognitive development in deaf children: the interface of language and perception in neuropsychology. In: Handbook of Neuropsychology, vol. 8, no. part II, pp. 71–107 (2002)Google Scholar
  5. 5.
    Besio, S., et al.: Critical factors involved in using interactive robots for play activities of children with disabilities. In: Proceedings of AAATE 2007 on Challenges for Assistive Technology, pp. 505–509 (2007)Google Scholar
  6. 6.
    Kose, H., Akalin, N., Uluer, P.: Socially interactive robotic platforms as sign language tutors. Int. J. Humanoid Rob. 11(01), 1450003 (2014)CrossRefGoogle Scholar
  7. 7.
    Köse, H., et al.: The effect of embodiment in sign language tutoring with assistive humanoid robots. Int. J. Soc. Robot. 7(4), 537–548 (2015)CrossRefGoogle Scholar
  8. 8.
    Kose, H., et al.: Evaluation of the robot assisted sign language tutoring using video-based studies. Int. J. Soc. Robot. 4(3), 273–283 (2012)CrossRefGoogle Scholar
  9. 9.
    Janssen, J.B., van der Wal, C.C., Neerincx, M.A., Looije, R.: Motivating children to learn arithmetic with an adaptive robot game. In: Mutlu, B., Bartneck, C., Ham, J., Evers, V., Kanda, T. (eds.) ICSR 2011. LNCS, vol. 7072, pp. 153–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Nalin, M., et al.: Children’s adaptation in multi-session interaction with a humanoid robot. In: 2012 IEEE on RO-MAN. IEEE (2012)Google Scholar
  11. 11.
    Schmitz, A., et al.: Design, realization and sensorization of the dexterous icub hand. In: 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE (2010)Google Scholar
  12. 12.
    Albers, A., et al.: Upper body of a new humanoid robot-the design of ARMAR III. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE (2006)Google Scholar
  13. 13.
    Diftler, M.A., et al.: Robonaut 2-the first humanoid robot in space. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)Google Scholar
  14. 14.
    Gouaillier, D., et al.: Mechatronic design of NAO humanoid. In: IEEE International Conference on Robotics and Automation, ICRA 2009. IEEE (2009)Google Scholar
  15. 15.
    Ha, I., et al.: Development of open humanoid platform DARwIn-OP. In: 2011 Proceedings of SICE Annual Conference (SICE). IEEE (2011)Google Scholar
  16. 16.
    Allgeuer, P., et al.: Child-sized 3D printed igus humanoid open platform. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (2015)Google Scholar
  17. 17.
    Meghdari, A., Mahmoudian, M., Arefi, M.: Geometric adaptability: a novel mechanical design in the sharif artificial hand. Int. J. Robot. Autom. 7(2), 80–85 (1992)Google Scholar
  18. 18.
    Meghdari, A., Sayyaadi, H.: Optimizing motion trajectories in dexterous fingers by dynamic programming technique. ROBOTICA Int. J. 10, 419–426 (1992)CrossRefGoogle Scholar
  19. 19.
    Aghili, F., Meghdari, A.: Mechanical design of a modular arm prosthesis. Int. J. Robot. Autom. 10(1), 22–28 (1995)Google Scholar
  20. 20.
    Valli, C., Lucas, C.: Linguistics of American Sign Language: An Introduction. Gallaudet University Press, Washington DC (2000)Google Scholar
  21. 21.
    Stokoe, W.C.: Sign language structure: an outline of the visual communication systems of the American deaf. J. Deaf Stud. Deaf Educ. 10(1), 3–37 (2005)CrossRefGoogle Scholar
  22. 22.
    Tzafestas, S.G.: Human-robot social interaction. In: Sociorobot World, pp. 53–69 (2016)Google Scholar
  23. 23.
    Alemi, M., Meghdari, A., Ghazisaedy, M.: The impact of social robotics on L2 learners’ anxiety and attitude in English vocabulary acquisition. Int. J. Soc. Robot. 7(4), 523–535 (2015)CrossRefGoogle Scholar
  24. 24.
    Kanda, T., et al.: Analysis of humanoid appearances in human–robot interaction. IEEE Trans. Robot. 24(3), 725–735 (2008)CrossRefGoogle Scholar
  25. 25.
    Thomas, F., Johnston, O., Rawls, W.: Disney Animation: The Illusion of Life, vol. 6. Abbeville Press, New York (1981)Google Scholar
  26. 26.
    Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13(3), 351–359 (1978)CrossRefGoogle Scholar
  27. 27.
    Cipriani, C., Controzzi, M., Carrozza, M.C.: The SmartHand transradial prosthesis. J. Neuroengineering Rehabil. 8(1), 1 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Social and Cognitive Robotics Laboratory, Center of Excellence in Design, Robotics and Automation (CEDRA)Sharif University of TechnologyTehranIran
  2. 2.Islamic Azad University, Tehran-west BranchTehranIran

Personalised recommendations