Skip to main content

The Use of Infrared Thermography in the Study of Sport and Exercise Physiology

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

Infrared thermography (IRT) is considered an upcoming, promising methodology in the field of exercise physiology. Skin temperature distribution derives from muscular activity, skin blood flow as well as perspiration patterns in specific body parts. This chapter aims to provide a general overview on the literature about the study of the skin temperature response to exercise assessed by means of IRT and its relationship with other thermoregulatory variables, exercise characteristics and performance factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singapore 37:347–353

    Google Scholar 

  2. Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci Basic Clin 196:1–2. doi:10.1016/j.autneu.2016.02.007

    Article  Google Scholar 

  3. González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97:340–346. doi:10.1113/expphysiol.2011.058701

    Article  Google Scholar 

  4. Nybo L (2010) Cycling in the heat: performance perspectives and cerebral challenges. Scand J Med Sci Sports 20(Suppl 3):71–79. doi:10.1111/j.1600-0838.2010.01211.x

    Article  Google Scholar 

  5. Charkoudian N (2010) Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol Bethesda Md 1985(109):1221–1228. doi:10.1152/japplphysiol.00298.2010

    Google Scholar 

  6. Kenney WL, Johnson JM (1992) Control of skin blood flow during exercise. Med Sci Sports Exerc 24:303–312

    Article  Google Scholar 

  7. Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci Basic Clin 196:3–13. doi:10.1016/j.autneu.2016.03.001

    Article  Google Scholar 

  8. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol 71:28–55. doi:10.1016/j.infrared.2015.02.007

    Article  ADS  Google Scholar 

  9. González-Alonso J, Teller C, Andersen SL et al (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol Bethesda Md 1985 86:1032–1039

    Google Scholar 

  10. Nielsen B, Savard G, Richter EA et al (1990) Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol 69:1040–1046

    Google Scholar 

  11. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97:327–332. doi:10.1113/expphysiol.2011.061002

    Article  Google Scholar 

  12. Nielsen B, Hales JR, Strange S et al (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485

    Article  Google Scholar 

  13. Nybo L, Møller K, Volianitis S et al (2002) Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 93:58–64

    Article  Google Scholar 

  14. Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91:1055–1060

    Google Scholar 

  15. Galloway SD, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249

    Article  Google Scholar 

  16. Priego Quesada JI, Martínez N, Salvador Palmer R et al (2016) Effects of the cycling workload on core and local skin temperatures. Exp Therm Fluid Sci 77:91–99. doi:10.1016/j.expthermflusci.2016.04.008

    Article  Google Scholar 

  17. Fujii N, Honda Y, Komura K et al (2014) Effect of voluntary hypocapnic hyperventilation on the relationship between core temperature and heat loss responses in exercising humans. J Appl Physiol 117:1317–1324. doi:10.1152/japplphysiol.00334.2014

    Article  Google Scholar 

  18. Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN (2010) Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol 109:1989–1995. doi:10.1152/japplphysiol.00367.2010

    Article  Google Scholar 

  19. Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. doi:10.1016/j.jtherbio.2014.04.002

    Article  Google Scholar 

  20. Torii M, Yamasaki M, Sasaki T, Nakayama H (1992) Fall in skin temperature of exercising man. Br J Sports Med 26:29–32

    Article  Google Scholar 

  21. Kenny GP, Reardon FD, Zaleski W et al (2003) Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J Appl Physiol 94:2350–2357. doi:10.1152/japplphysiol.01107.2002

    Article  Google Scholar 

  22. Saltin B, Gagge AP, Stolwijk JA (1970) Body temperatures and sweating during thermal transients caused by exercise. J Appl Physiol 28:318–327

    Google Scholar 

  23. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385

    Article  Google Scholar 

  24. Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi:10.1007/s00421-010-1744-8

    Article  Google Scholar 

  25. Childs PRN (2001) Practical temperature measurement. Butterworth-Heinemann

    Google Scholar 

  26. Smith ADH, Crabtree DR, Bilzon JLJ, Walsh NP (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31:95–114. doi:10.1088/0967-3334/31/1/007

    Article  Google Scholar 

  27. James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi:10.1016/j.jtherbio.2014.08.010

    Article  Google Scholar 

  28. de Andrade Fernandes A, dos Santos Amorim PR, Brito CJ et al (2014) Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiol Meas 35:189

    Article  Google Scholar 

  29. Niedermann R, Wyss E, Annaheim S et al (2013) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi:10.1007/s00484-013-0687-2

    Article  Google Scholar 

  30. Priego Quesada JI, Martínez Guillamón N, Ortiz Cibrián, de Anda RM et al (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi:10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  31. Buono MJ, Jechort A, Marques R et al (2007) Comparison of infrared versus contact thermometry for measuring skin temperature during exercise in the heat. Physiol Meas 28:855–859. doi:10.1088/0967-3334/28/8/008

    Article  Google Scholar 

  32. Psikuta A, Niedermann R, Rossi RM (2013) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 1–9

    Google Scholar 

  33. Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi:10.1088/0967-3334/32/10/003

    Article  Google Scholar 

  34. Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    Google Scholar 

  35. Ammer K (2009) Does neuromuscular thermography record nothing else but an infrared sympathetic skin response? Thermol Int 19:107–108

    Google Scholar 

  36. Balci GA, Basaran T, Colakoglu M (2016) Analysing visual pattern of skin temperature during submaximal and maximal exercises. Infrared Phys Technol 74:57–62. doi:10.1016/j.infrared.2015.12.002

    Article  ADS  Google Scholar 

  37. Ferreira JJA, Mendonça LCS, Nunes LAO et al (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36:1420–1427. doi:10.1007/s10439-008-9512-1

    Article  Google Scholar 

  38. Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi:10.1007/s10439-012-0718-x

    Article  Google Scholar 

  39. Formenti D, Ludwig N, Trecroci A et al (2016) Dynamics of thermographic skin temperature response during squat exercise at two different speeds. J Therm Biol 59:58–63. doi:10.1016/j.jtherbio.2016.04.013

    Article  Google Scholar 

  40. Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38:158–163. doi:10.1007/s10439-009-9809-8

    Article  Google Scholar 

  41. Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi:10.1016/j.jtherbio.2014.12.005

    Article  Google Scholar 

  42. Zontak A, Sideman S, Verbitsky O, Beyar R (1998) Dynamic thermography: analysis of hand temperature during exercise. Ann Biomed Eng 26:988–993

    Article  Google Scholar 

  43. Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36:674–688. doi:10.1249/01.MSS.0000121945.36635.61

    Article  Google Scholar 

  44. Kenney WL, Wilmore JH, Costill DL (2012) Physiology of sport and exercise. Human Kinetics

    Google Scholar 

  45. Schlager O, Gschwandtner ME, Herberg K et al (2010) Correlation of infrared thermography and skin perfusion in Raynaud patients and in healthy controls. Microvasc Res 80:54–57. doi:10.1016/j.mvr.2010.01.010

    Article  Google Scholar 

  46. González-Alonso J, Calbet JA, Nielsen B (1999) Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol 520(Pt 2):577–589

    Article  Google Scholar 

  47. Johnson JM (1985) Kellogg DL (2010) Local thermal control of the human cutaneous circulation. J Appl Physiol Bethesda Md 109:1229–1238. doi:10.1152/japplphysiol.00407.2010

    Google Scholar 

  48. Simmons GH, Wong BJ, Holowatz LA, Kenney WL (2011) Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol 96:822–828. doi:10.1113/expphysiol.2010.056176

    Article  Google Scholar 

  49. Brengelmann GL, Johnson JM, Hermansen L, Rowell LB (1977) Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol 43:790–794

    Google Scholar 

  50. Vainer BG (2005) FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol 50:R63. doi:10.1088/0031-9155/50/23/R01

    Article  ADS  Google Scholar 

  51. Taylor GI, Gianoutsos MP, Morris SF (1994) The neurovascular territories of the skin and muscles: anatomic study and clinical implications. Plast Reconstr Surg 94:1–36

    Article  Google Scholar 

  52. Merla A, Di Donato L, Romani GL et al (2008) Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls. Int J Immunopathol Pharmacol 21:679–686

    Google Scholar 

  53. Priego Quesada JI, Carpes FP, Salvador Palmer R et al (2016) Effect of saddle height on skin temperature measured in different days of cycling. SpringerPlus 5:205–214. doi:10.1186/s40064-016-1843-z

    Article  Google Scholar 

  54. Priego Quesada JI, Lucas-Cuevas AG, Salvador Palmer R et al (2016) Definition of the thermographic regions of interest in cycling by using a factor analysis. Infrared Phys Technol 75:180–186. doi:10.1016/j.infrared.2016.01.014

    Article  ADS  Google Scholar 

  55. Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M et al (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi:10.1016/j.jtherbio.2015.06.005

    Article  Google Scholar 

  56. Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215

    Google Scholar 

  57. Arfaoui A, Bertucci WM, Letellier T, Polidori G (2014) Thermoregulation during incremental exercise in masters cycling. J Sci Cycl 3:33–41

    Google Scholar 

  58. Neves EB, Cunha RM, Rosa C et al (2016) Correlation between skin temperature and heart rate during exercise and recovery, and the influence of body position in these variables in untrained women. Infrared Phys Technol 75:70–76. doi:10.1016/j.infrared.2015.12.018

    Article  ADS  Google Scholar 

  59. Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Eng 16(Suppl 1):114–115. doi:10.1080/10255842.2013.815902

    Article  Google Scholar 

  60. Merla A, Iodice P, Tangherlini A et al (2005) Monitoring skin temperature in trained and untrained subjects throughout thermal video. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2:1684–1686. doi:10.1109/IEMBS.2005.1616767

    Google Scholar 

  61. Fritzsche RG, Coyle EF (2000) Cutaneous blood flow during exercise is higher in endurance-trained humans. J Appl Physiol 88:738–744

    Google Scholar 

  62. Bartuzi P, Roman-Liu D, Wiśniewski T (2012) The influence of fatigue on muscle temperature. Int J Occup Saf Ergon JOSE 18:233–243

    Google Scholar 

  63. Chudecka M, Lubkowska A, Kempińska-Podhorodecka A (2014) Body surface temperature distribution in relation to body composition in obese women. J Therm Biol 43:1–6. doi:10.1016/j.jtherbio.2014.03.001

    Article  Google Scholar 

  64. Savastano DM, Gorbach AM, Eden HS et al (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90:1124–1131. doi:10.3945/ajcn.2009.27567

    Article  Google Scholar 

  65. Johnson W, de Ruiter I, Kyvik KO et al (2014) Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition. Behav Genet. doi:10.1007/s10519-014-9690-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Formenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Formenti, D., Merla, A., Priego Quesada, J.I. (2017). The Use of Infrared Thermography in the Study of Sport and Exercise Physiology. In: Priego Quesada, J. (eds) Application of Infrared Thermography in Sports Science. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-47410-6_5

Download citation

Publish with us

Policies and ethics