Infrared Thermography for the Detection of Injury in Sports Medicine

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


In this chapter, we will describe how infrared thermography (IRT) can help us to prevent and monitor injuries, always based on the use of standardised protocols. We will explain some of the main physiological aspects and will enumerate the main applications, with examples gathered from our research and professional experience with top sport athletes and teams. To summarize, IRT can help us to reduce injury incidence and to increase the performance in a non-invasive, fast and objective way.


Anterior Cruciate Ligament Skin Temperature Thermal Image Injury Prevention Training Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fernández Cuevas I, Gómez Carmon PM, Sillero Quintana M, et al (2010) Economic costs estimation of soccer injuries in first and second spanish division professional teams. In: 15th annual congress of the European college of sport sciences ECSSGoogle Scholar
  2. 2.
    Gabbett TJ, Jenkins DG (2011) Relationship between training load and injury in professional rugby league players. J Sci Med Sport 14:204–209. doi: 10.1016/j.jsams.2010.12.002 CrossRefGoogle Scholar
  3. 3.
    Gabbett TJ (2016) The training—injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med 50:273–280. doi: 10.1136/bjsports-2015-095788 CrossRefGoogle Scholar
  4. 4.
    Bandeira F, de Moura MAM, de Souza MA et al (2012) Pode a termografia auxiliar no diagnóstico de lesões musculares em atletas de futebol? Rev Bras Med Esporte 18:246–251CrossRefGoogle Scholar
  5. 5.
    Bandeira F, Neves EB, de Moura MAM, Nohama P (2014) A termografia no apoio ao diagnóstico de lesão muscular no esporte. Rev Bras Med Esporte 20:59–64CrossRefGoogle Scholar
  6. 6.
    Barcelos EZ, Caminhas WM, Ribeiro E et al (2014) A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images. Sensors 14:21950–21967. doi: 10.3390/s141121950 CrossRefGoogle Scholar
  7. 7.
    BenEliyahu DJ (1990) Infrared Thermography in the diagnosis and management of sports injuries: a clinical study and literature review. Chiropr Sports Med 4:41–53Google Scholar
  8. 8.
    Costello J, Stewart IB, Selfe J et al (2013) Use of thermal imaging in sports medicine research: a short report: short article. Int SportMed J 14:94–98Google Scholar
  9. 9.
    Tauchmannova H, Gabrhel J, Cibak M (1993) Thermographic findings in different sports, their value in the prevention of soft tissue injuries. Themol Osterr 3:91–95Google Scholar
  10. 10.
    Čoh M, Širok B (2007) Use of the thermovision method in sport training. Facta Univ-Ser Phys Educ Sport 5:85–94Google Scholar
  11. 11.
    Kenny GP, Jay O (2007) Sex differences in postexercise esophageal and muscle tissue temperature response. Am J Physiol Regul Integr Comp Physiol 292:R1632–1640. doi: 10.1152/ajpregu.00638.2006 CrossRefGoogle Scholar
  12. 12.
    Fernández Cuevas I (2012) Effect of endurance, speed and strength training on skin temperature measured by infrared thermography = Efecto del entrenamiento de resistencia, velocidad y fuerza en la temperatura de la piel a través de la termografía infrarroja. Universidad Politécnica de MadridGoogle Scholar
  13. 13.
    Frim J, Livingstone SD, Reed LD et al (1990) Body composition and skin temperature variation. J Appl Physiol Bethesda Md 68:540–543Google Scholar
  14. 14.
    Ring EFJ (1990) Quantitative thermal imaging. Clin Phys Physiol Meas 11:87. doi: 10.1088/0143-0815/11/4A/310 CrossRefGoogle Scholar
  15. 15.
    Niu HH, Lui PW, Hu JS et al (2001) Thermal symmetry of skin temperature: normative data of normal subjects in Taiwan. Zhonghua Yi Xue Za Zhi Chin Med J Free China Ed 64:459–468Google Scholar
  16. 16.
    Uematsu S, Edwin DH, Jankel WR et al (1988) Quantification of thermal asymmetry: part 1: normal values and reproducibility. J Neurosurg 69:552–555CrossRefGoogle Scholar
  17. 17.
    Piñonosa Cano S, Sillero Quintana M, Milanovic L et al (2013) Thermal evolution of lower limbs during a rehabilitation process after anterior cruciate ligament surgery. Kinesiol Zagreb Croat 45:121–129Google Scholar
  18. 18.
    Piñonosa Cano S (2016) Use of infrared thermography as a tool to monitor skin temperature along the recovery process of an anterior cruciate ligament surgery. Universidad Politécnica de MadridGoogle Scholar
  19. 19.
    Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J et al (2015) Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys Technol 71:28–55. doi: 10.1016/j.infrared.2015.02.007 ADSCrossRefGoogle Scholar
  20. 20.
    Carmona Gómez P (2012) Influencia de la información termográfica infrarroja en el protocolo de prevención de lesiones de un equipo de fútbol profesional español. (Influence of infrared thermographic information in the injury prevention protocol of a professional spanish footbal team). Universidad Politécnica de MadridGoogle Scholar
  21. 21.
    Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10:4700–4715CrossRefGoogle Scholar
  22. 22.
    Ammer K (2006) Influence of imaging and object conditions on temperature readings from medical infrared images. Pol J Environ Stud (Submitt)Google Scholar
  23. 23.
    Sillero-Quintana M, Fernández Cuevas I, Arnaiz Lastras J, Bouzas Marins JC (2015) TERMOINEF group: protocol for thermographic assessment in humansGoogle Scholar
  24. 24.
    IACT (2002) Thermology guidelines. standards and protocolos in clinical thermography imagingGoogle Scholar
  25. 25.
    ISO (2004) Ergonomics—evaluation of thermal strain by physiological measurements. ISO 9886Google Scholar
  26. 26.
    Schwartz RG (2006) Guidelines for neuromusculoskeletal thermography. Thermol Int 16:5–9Google Scholar
  27. 27.
    Ammer K (2015) Do we need reference data of local skin temperatures? Thermol Int 25:45–47Google Scholar
  28. 28.
    Ammer K (2003) Need for standardisation of measurements in thermal imaging. Thermogr Lasers Med Akad Cent Graf-Mark Lodart SA Lodz 13–18Google Scholar
  29. 29.
    Ammer K (2008) The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol Int 18:125–144Google Scholar
  30. 30.
    Ammer K, Ring EFJ (2006) Standard procedures for infrared imaging in medicine. In: Biomedical engineering handbook. CRC Press, ‎Boca RatonGoogle Scholar
  31. 31.
    Mercer JB, Ring EFJ (2009) Fever screening and infrared thermal imaging: concerns and guidelines. Thermol Int 19:67–69Google Scholar
  32. 32.
    Plassmann P, Ring EFJ, Jones CD (2006) Quality assurance of thermal imaging systems in medicine. Thermol Int 16:10–15Google Scholar
  33. 33.
    Ring EFJ, Ammer K (2012) Infrared thermal imaging in medicine. Physiol Meas 33:R33–46. doi: 10.1088/0967-3334/33/3/R33 ADSCrossRefGoogle Scholar
  34. 34.
    Ring EFJ, Ammer K (2000) The technique of infrared imaging in medicine. Thermol Int 10:7–14Google Scholar
  35. 35.
    Ring EFJ, Ammer K, Wiecek B et al (2007) Quality assurance for thermal imaging systems in medicine. Thermol Int 17:103–106Google Scholar
  36. 36.
    Hart J, Owens EF (2004) Stability of paraspinal thermal patterns during acclimation. J Manipulative Physiol Ther 27:109–117. doi: 10.1016/j.jmpt.2003.12.006 CrossRefGoogle Scholar
  37. 37.
    Vardasca R, Gabriel J (2016) Is the low cost thermal camera FLIR C2 suitable for medical thermal measurements? Thermol Int 26Google Scholar
  38. 38.
    Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007 CrossRefGoogle Scholar
  39. 39.
    Fernandez Cuevas I, Marins JC, Gomez Carmona PM et al (2012) Reliability and reproductibility of skin temperature of overweight subjects by an infrared thermograpy software designed for human beings. Thermol Int 22:130–137Google Scholar
  40. 40.
    Fournet D, Redortier B, Havenith G (2012) A method for whole-body skin temperature mapping in humans. Thermol Int 22:157–159Google Scholar
  41. 41.
    Varajão J, Cunha M, Bjørn-Andersen N et al (2014) Segmentation algorithms for thermal images. Procedia Technol 16:1560–1569. doi: 10.1016/j.protcy.2014.10.178 CrossRefGoogle Scholar
  42. 42.
    Steketee J (1973) Spectral emissivity of skin and pericardium. Phys Med Biol 18:686CrossRefGoogle Scholar
  43. 43.
    Kellogg DL, Pérgola P (2000) Skin responses to exercise and training. In: Garrett WE, Kirkendall DT (eds) Exercise and sport science. Lippincott-Raven Publishers, Philadelphia, pp 239–250Google Scholar
  44. 44.
    Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612. doi: 10.4065/78.5.603 CrossRefGoogle Scholar
  45. 45.
    Wallin BG (1990) Neural control of human skin blood flow. J Auton Nerv Syst 30(Suppl):S185–190CrossRefGoogle Scholar
  46. 46.
    Blatteis CM (1998) Physiology and pathophysiology of temperature regulation. World Scientific, SingaporeCrossRefGoogle Scholar
  47. 47.
    Wilmore JH, Costill DL, Kenney WL (2008) Physiology of sport and exercise. Human KineticsGoogle Scholar
  48. 48.
    Incropera FP (1999) Introduction to heat transfer: with brief fluid. Wiley, New YorkGoogle Scholar
  49. 49.
    Anbar M (1987) Computerized thermography. Int J Technol Assess Health Care 3:613–621CrossRefGoogle Scholar
  50. 50.
    Al-Nakhli HH, Petrofsky JS, Laymon MS, Berk LS (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. J Vis Exp. doi: 10.3791/3551 Google Scholar
  51. 51.
    Hildebrandt C, Zeilberger K, Ring EFJ, Raschner C (2012) The application of medical infrared thermography in sports medicine. Ultrasound 10:2Google Scholar
  52. 52.
    Zaproudina N, Ming Z, Hänninen OO (2006) Plantar infrared thermography measurements and low back pain intensity. J Manipulative Physiol Ther 29:219–223CrossRefGoogle Scholar
  53. 53.
    Vardasca R (2008) Symmetry of temperature distribution in the upper and lower extremities. Thermol Int 18:154–155Google Scholar
  54. 54.
    Vardasca R, Ring F, Plassmann P, Jones C (2012) Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60Google Scholar
  55. 55.
    Pichot C (2001) Aplicación de la termografía en el dolor lumbar crónico. Rev Soc Esp Dolor 8:43–47Google Scholar
  56. 56.
    Feldman F, Nickoloff EL (1984) Normal thermographic standards for the cervical spine and upper extremities. Skeletal Radiol 12:235–249. doi: 10.1007/BF00349505 CrossRefGoogle Scholar
  57. 57.
    Garagiola U, Giani E (1990) Use of telethermography in the management of sports injuries. Sports Med Auckl NZ 10:267–272CrossRefGoogle Scholar
  58. 58.
    de Weerd L, Mercer JB, Weum S (2011) Dynamic infrared thermography. Clin Plast Surg 38:277–292. doi: 10.1016/j.cps.2011.03.013 CrossRefGoogle Scholar
  59. 59.
    Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37:621–628CrossRefGoogle Scholar
  60. 60.
    Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35:379–385CrossRefGoogle Scholar
  61. 61.
    Fernández-Cuevas I, Sillero-Quintana M, Garcia-Concepcion MA et al (2014) Monitoring skin thermal response to training with infrared thermography. New Stud Athl 29:57–71Google Scholar
  62. 62.
    Abate M, Di Carlo L, Di Romualdo S et al (2009) Postural adjustment in experimental leg length difference evaluated by means of thermal infrared imaging. Physiol Meas 31:35CrossRefGoogle Scholar
  63. 63.
    Koprowski R (2015) Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture. Comput Biol Med 62:110–118. doi: 10.1016/j.compbiomed.2015.04.017 CrossRefGoogle Scholar
  64. 64.
    Abate M, Di Carlo L, Di Donato L et al (2013) Comparison of cutaneous termic response to a standardised warm up in trained and untrained individuals. J Sports Med Phys Fitness 53:209–215Google Scholar
  65. 65.
    Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871. doi: 10.1007/s10439-012-0718-x CrossRefGoogle Scholar
  66. 66.
    Priego Quesada JI, Carpes FP, Bini RR et al (2015) Relationship between skin temperature and muscle activation during incremental cycle exercise. J Therm Biol 48:28–35. doi: 10.1016/j.jtherbio.2014.12.005 CrossRefGoogle Scholar
  67. 67.
    Sillero Quintana M, Conde Pascual E, Gómez Carmona PM et al (2012) Effect of yoga and swimming on body temperature of pregnant women. Thermol Int 22:143–149Google Scholar
  68. 68.
    Hadžić V, Širok B, Malneršič A, Čoh M, Can infrared thermography be used to monitor fatigue during exercise? A case study. J Sport Health Sci. doi: 10.1016/j.jshs.2015.08.002
  69. 69.
    Sillero-Quintana M, Fernández-Jaén T, Fernández-Cuevas I et al (2015) Infrared thermography as a support tool for screening and early diagnosis in emergencies. J Med Imaging Health Inform 5:1223–1228CrossRefGoogle Scholar
  70. 70.
    Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Engin 16(Suppl 1):114–115. doi: 10.1080/10255842.2013.815902 CrossRefGoogle Scholar
  71. 71.
    Lewis GF, Gatto RG, Porges SW (2011) A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology 48:877–887. doi: 10.1111/j.1469-8986.2010.01167.x CrossRefGoogle Scholar
  72. 72.
    Dotti F, Ferri A, Moncalero M, Colonna M (2016) Thermo-physiological comfort of soft-shell back protectors under controlled environmental conditions. Appl Ergon 56:144–152. doi: 10.1016/j.apergo.2016.04.002 CrossRefGoogle Scholar
  73. 73.
    Fournet D, Redortier B, Havenith G (2015) Can body-mapped garments improve thermal comfort for sport in the cold? Extreme Physiol Med 4:A74CrossRefGoogle Scholar
  74. 74.
    Fournet D, Ross L, Voelcker T et al (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38:339–344. doi: 10.1016/j.jtherbio.2013.04.005 CrossRefGoogle Scholar
  75. 75.
    Salces JN, Quintana MS (2012) Epidemiología de las lesiones en el fútbol profesional español en la temporada 2008–2009. Arch Med Deporte 750–766Google Scholar
  76. 76.
    Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232CrossRefGoogle Scholar
  77. 77.
    Noya Salces J, Gómez-Carmona PM, Gracia-Marco L et al (2014) Epidemiology of injuries in first division Spanish football. J Sports Sci 32:1263–1270CrossRefGoogle Scholar
  78. 78.
    Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D et al (2014) Thermographic profile of soccer players’ lower limbs. Rev Andal Med Deporte 7:1–6. doi: 10.1016/S1888-7546(14)70053-x CrossRefGoogle Scholar
  79. 79.
    Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med Auckl NZ 43:313–338. doi: 10.1007/s40279-013-0029-x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sports Department, Faculty of Physical Activity and Sport Sciences—INEFUniversidad Politécnica de MadridMadridSpain
  2. 2.School of Health and Sports Science, Cluster for Health ImprovementUniversity of the Sunshine CoastSippy DownsAustralia
  3. 3.Faculty of Health ScienceUniversidad Isabel I de BurgosBurgosSpain

Personalised recommendations