Skip to main content

Charged Particle-Beam Acceleration and Lasers: Contextualizing Technologies that Shaped Electronic Warfare

  • Chapter
  • First Online:
SiGe-based Re-engineering of Electronic Warfare Subsystems

Part of the book series: Signals and Communication Technology ((SCT))

  • 1126 Accesses

Abstract

In 1931, Nikola Tesla, famous inventor and the father of alternating current (AC), publicized at a media conference that he was on the brink of discovering and presenting a totally new source of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1000 angstroms (1000 Å) = 100 nanometres (100 nm).

  2. 2.

    1 Joule (1 J) = 6.242 × 10+18 electron-volts (6.242 × 10+18 eV).

  3. 3.

    Photo-physical processes are defined as processes where thermal and non-thermal mechanisms contribute to the overall processing rate (Bäuerle 2013).

  4. 4.

    Astigmatism in an optical system is when the rays propagating in two perpendicular planes have different focus points.

  5. 5.

    A periodic structure of dipole magnets forcing electrons to undergo oscillations and resulting in radiated energy.

References

  • Barbalat, O. (1994). Applications of particle accelerators. CERN-AC-93-04-BLIT-REV. CERN, 1994.

    Google Scholar 

  • Bäuerle, D. W. (2013). Laser processing and chemistry. Springer Science & Business Media, 29 June 2013.

    Google Scholar 

  • Benson, R. C., & Mirarchi, M. R. (1964). The spinning reflector technique for ruby laser pulse control. IEEE Transactions on Military Electronics, 8(1), 13–21.

    Google Scholar 

  • Bhatia, M. S., & Kumar, G. (2002). On the EMI potential of various laser types. In Proceedings of the Electromagnetic Interference and Compatibility (pp. 3–5).

    Google Scholar 

  • Bhawalkar, D. D., Gambling, W. A., & Smith, R. C. (1964). Investigation of relaxation oscillations in the output from a ruby laser. Radio and Electronic Engineer, 27(4), 285–291.

    Google Scholar 

  • Brown, G., Halback, K., Harris, J., & Winick, H. (1983). Wiggler and undulator magnets—A review. Nuclear Instruments and Methods, 208(65–77), 1983.

    Google Scholar 

  • CERN. (2009). CERN LHC: The guide. Retrieved Jan 21, 2016 from http://cds.cern.ch

  • Chen, Y. F., Liao, T. S., Kao, C. F., Huang, T. M., Lin, K. H., & Wang, S. C. (1996). Optimization of fiber-coupled laser-diode end-pumped lasers: Influence of pump-beam quality. IEEE Journal of Quantum Electronics, 32(11), 2010–2016.

    Google Scholar 

  • Coldren, L. A., Fish, G. A., Akulova, Y., Barton, J. S., Johansson, L., & Coldren, C. W. (2004). Tunable semiconductor lasers: A tutorial. Journal of Lightwave Technology, 22(1), 193–202.

    Google Scholar 

  • Einstein, A. (1905). Does the inertia of a body depend upon its energy-content? Translated from Annalen der Physik, 18(639), 1905.

    Google Scholar 

  • Endo, M., & Walter, R. F. (2006). Gas lasers. CRC Press, 26 Dec 2006.

    Google Scholar 

  • Esarey, E., Schroeder, C. B., & Leemans, W. P. (2009). Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 81(3), 1229–1280.

    Google Scholar 

  • Evtuhov, V., & Neeland, J. K. (1965). Study of the output spectra of ruby laser. IEEE Journal of Quantum Electronics, 1(1), 7–12.

    Google Scholar 

  • Gilmore, R. (2004). Elementary quantum mechanics in one dimension. USA: JHU Press.

    MATH  Google Scholar 

  • Gulley, J. R. (2011). Modeling free-carrier absorption and avalanching by ultrashort laser pulses. In Proceedings of SPIE. 8190 819022-1-112011.

    Google Scholar 

  • Ivey, H. F. (1966). Electroluminescence and semiconductor lasers. IEEE Journal of Quantum Electronics, 2(11), 713–726.

    Google Scholar 

  • Javan, A., Bennet, W. R., & Herriott, D. R. (1961). Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Physical Review Letters, 6(106–110), 1961.

    Google Scholar 

  • Kelsall, R. W., & Soref, R. A. (2003). Silicon-Germanium quantum-cascade lasers. International Journal of High Speed Electronics and Systems, 13(2), 197–223.

    Google Scholar 

  • Knochenhauer, C., Hauptmann, S., Scheytt, C., & Ellinger, F. (2009). A compact, low-power 40 Gbit/s differential laser driver in SiGe BiCMOS technology. In 2009 European Microwave Integrated Circuits Conference (pp 324–326).

    Google Scholar 

  • Laser Enterprise. (2016). Retrieved Feb 4, 2016 from http://www.laserenterprise.com/

  • LaserFocusWorld. (1995). Retrieved Feb 4, 2016 from http://www.laserfocusworld.com

  • Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187, 493–494.

    Article  Google Scholar 

  • Marshall, W. K., & Burk, B. D. (1986). Received optical power calculations for optical communications link performance analysis. TDA Progress Report. 42–87, July–Sept 1986.

    Google Scholar 

  • Mobarhan, K. S. (1999). Application note: Fiber optics and photonics. Test and characterization of laser diodes: Determination of principal parameters> Newport Application Note.

    Google Scholar 

  • Moto, A., Ikagawa, T., Sato, S., Yamasaki, Y., Onishi, Y., & Tanaka, K. (2013). A low power quad 25.78-Gbit/s 2.5 V laser driver using shunt-driving in 0.18 µm SiGe-BiCMOS. In 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (pp. 1–4).

    Google Scholar 

  • Nathan, M. I., Dumke, W. P., Burns, G., Dill, F. H., & Lasher, G. (1962). Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1, 62–64, Nov 1962.

    Google Scholar 

  • Oxborrow, M., Breeze, J. D., & Alford, N. M. (2012). Microwave laser fulfills 60 years of promise. Nature, 488, 353–356.

    Google Scholar 

  • Patel, C. (1984). Lasers—their development and applications at AT&T bell laboratories. IEEE Journal of Quantum Electronics, 20(6), 561–576.

    Google Scholar 

  • Photonics Handbook. (2015) Retrieved Feb 3, 2016 from http://www.photonics.com/

  • Porto, S. P. S. (1963). A simple method for calibration of ruby laser output. In Proceedings of the IEEE, 51(4), 606–607.

    Google Scholar 

  • Quist, T. M., Rediker, R. H., Keyes, R. J., Krag, W. E., Lax, B., McWhorter, A. L., et al. (1962). Semiconductor maser of GaAs. Applied Physics Letters, 1, 91–92.

    Google Scholar 

  • Seo, D-K., & Hoffmann, R. (1999). Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theoretical Chemistry Accounts, 102, 23–32.

    Google Scholar 

  • Silfvast, W. T. (2004). Laser fundamentals. In School of Optics: University of Central Florida (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Tauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), 37–46.

    Google Scholar 

  • Townes, C. H. (1965). 1964 Nobel lecture: Production of coherent radiation by atoms and molecules. IEEE Spectrum, 2(8), 30–43.

    Google Scholar 

  • Tsujino, S., Scheinert, M., Sigg, M., Grutzmacher, D., & Faist, J. (2006). Strategies to improve optical gain and waveguide loss in SiGe quantum cascade devices. In 2nd IEEE International Conference on Group IV Photonics (pp. 4–6).

    Google Scholar 

  • Woodyard, J. R. (1948). High-particle accelerators. Electrical Engineering, 67(8), 759–767.

    Article  Google Scholar 

  • Yariv, A., & Gordon, J. P. (1963). The Laser. In Proceedings of the IEEE, 51(1), 4–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynand Lambrechts .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lambrechts, W., Sinha, S. (2017). Charged Particle-Beam Acceleration and Lasers: Contextualizing Technologies that Shaped Electronic Warfare. In: SiGe-based Re-engineering of Electronic Warfare Subsystems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47403-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47403-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47402-1

  • Online ISBN: 978-3-319-47403-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics