Capacitively Coupled Chopper Instrumentation Amplifiers for Low-Voltage Applications

  • Qinwen FanEmail author
  • Kofi A. A. Makinwa
  • Johan H. Huijsing
Part of the Analog Circuits and Signal Processing book series (ACSP)


Chapter  6 has explored the use of a CCIA for high-side current sensing applications, where its wide CMVR and high power efficiency can be optimally leveraged.


  1. 1.
    T. Denison et al., “A 2 µW 100nV/√Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE JSSC, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.Google Scholar
  2. 2.
    Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 1.8µ W 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes,” JSSC, vol. 46, no. 7, pp. 1534-1543, Jul. 2011.Google Scholar
  3. 3.
    G. Chen, S. Hanson, D. Blaauw and D. Sylvester, “Circuit design advances for wireless sensing applications,” IEEE Proc. pp. 1808-1827, Nov., 2010.Google Scholar
  4. 4.
    Y. Tachwali, H. Refai and J. E. Fagan, “Minimizing HVAC energy consumption using a wireless sensor network,” Proc. 33rd Annu. Conf. IEEE Ind. Electron. Soc., pp. 439-444, Nov. 2007.Google Scholar
  5. 5.
    N. Vlajic and D. Xia, “Wireless sensor networks: to cluster or not to cluster?,” Proc. of WoWMoM’06, 2006.Google Scholar
  6. 6.
    S. Drago et al., “A 200 μA duty-cycled PLL for wireless sensor nodes in 65 nm CMOS,” IEEE JSSC, vol. 45, is. 7, pp. 1305-1315, Jul. 2010.Google Scholar
  7. 7.
    X. Huang et al., “A 2.4 GHz/915 MHz 51 µW wake-up receiver with offset and noise suppression,” IEEE ISSCC Dig. Tech. Papers, pp. 222-223, Feb. 2010.Google Scholar
  8. 8.
    J. R. Hu and B. P. Otis, “A 3 µW, 400 MHz divide-by-5 injection-locked frequency divider with 56 % lock range in 90 nm CMOS,” IEEE RFICS, pp. 665-668, Jun. 2008.Google Scholar
  9. 9.
    M. van Elzakker et al., “A 10-Bit charge-redistribution ADC consuming 1.9 µW at 1 MS/s,” IEEE JSSC, vol. 45, no. 5, May 2010.Google Scholar
  10. 10.
    P. Harpe et al., “A 30fJ/conversion-step 8b 0-to-10MS/s asynchronous SAR ADC in 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 388-389, Feb. 2010.Google Scholar
  11. 11.
    V. Giannini et al., “An 820 µW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 238-239, Feb. 2008.Google Scholar
  12. 12.
    Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset,” JSSC, vol. 47, no. 2, pp. 464-475, Feb. 2012.Google Scholar
  13. 13.
    M. Pertijs and W. J. Kindt, “A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324-325, Feb. 2009.Google Scholar
  14. 14.
    J. F. Witte, J. H. Huijsing and K. A. A. Makinwa, “A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier,” VLIS Circuits, pp. 210-211, Jun. 2009.Google Scholar
  15. 15.
    R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error,” IEEE JSSC, vol. 46, no. 12, pp. 2794-2806, Dec. 2011.Google Scholar
  16. 16.
    R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE JSSC, vol. 38, no. 6, pp. 958-965, Jun. 2003.Google Scholar
  17. 17.
    N. Verma et al., “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE JSSC, vol. 45, no. 4, Apr. 2010.Google Scholar
  18. 18.
    J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe and K. A. A. Makinwa, “A 160 µW 8-Channel Active Electrode System for EEG Monitoring,” IEEE Trans. Biomedical circuits and systems, vol.5, no.6, Dec. 2011.Google Scholar
  19. 19.
    R. F. Yazicioglu et al., “A 30µ W analog signal processor ASIC for portable biopotential signal monitoring,” IEEE JSSC, vol. 46, no. 1, pp. 209-223, Jan. 2011.Google Scholar
  20. 20.
    D. Yeager et al., “A 9µA, addressable gen2 sensor tag for biosignal acquisition,” IEEE JSSC, vol. 45, no. 10, pp. 2198-2209, Oct. 2010.Google Scholar
  21. 21.
    C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.Google Scholar
  22. 22.
    K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits and Systems, vol. 36, no. 9, Sept. 1989.Google Scholar
  23. 23.
    R. Wu, K. A. A. Makinwa, J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE JSSC, vol. 44, no. 12, pp. 3232-3243, Dec. 2009.Google Scholar
  24. 24.
    J. H. Huijsing, Operational Amplifiers: Theory and Design. New York, Springer, 2011.Google Scholar
  25. 25.
    J. Xu, Q. Fan, J. H. Huijsing, C. Van Hoof, R. F. Yazicioglu, K. A. A. Makinwa, “Measurement and Analysis of Current Noise in Chopper Amplifiers,” IEEE JSSC, vol. 48, No. 7, July 2013.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qinwen Fan
    • 1
    Email author
  • Kofi A. A. Makinwa
    • 2
  • Johan H. Huijsing
    • 3
  1. 1.Mellanox TechnologiesDelfgauwThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.SchipluidenThe Netherlands

Personalised recommendations