Advertisement

Capacitively Coupled Chopper Amplifiers

  • Qinwen FanEmail author
  • Kofi A. A. Makinwa
  • Johan H. Huijsing
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

As discussed in Chap.  1, capacitively coupled chopper amplifiers can potentially handle input common-mode voltages far beyond their own supplies. Furthermore, their inherent use of chopping means that they can also achieve microvolt offset and low 1/f noise.

Keywords

Input Impedance Parasitic Capacitance Differential Pair Weak Inversion Output Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    LTC1043, Linear Technology, http://www.linear.com/product/LTC1043, Jan., 1984.
  2. 2.
    C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.Google Scholar
  3. 3.
    M. Snoeij, M. Ivanov, “A 36 V JFET-input bipolar operational amplifier with 1 μV/°C maximum offset drift and –126 dB total harmonic distortion,” ISSCC, pp. 248–249, Feb. 2011.Google Scholar
  4. 4.
    Viola Schaffer, Martijn F. Snoeij, Mikhail V. Ivanov, and Dimitar T. Trifonov, “A 36 V Programmable Instrumentation Amplifier With Sub-20 µV Offset and a CMRR in Excess of 120 dB at All Gain Settings,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2036-2046, July, 2009.CrossRefGoogle Scholar
  5. 5.
    J. F. Witte, J. H. Huijsing, and K. A. A. Makinwa, “A current-feedback instrumentation amplifier with 5 µV offset for bidirectional high-side current-sensing,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2769-2775, Dec., 2008.CrossRefGoogle Scholar
  6. 6.
    T. Denison, K. Consoer,W. Santa, et al.,“A 2 µW 100nV/√Hz Chopper Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials,” IEEE JSSC, vol. 42, no. 12, pp. 2934–2945, Dec., 2007.Google Scholar
  7. 7.
    R. P. Areny and J. G. Webster, “AC instrumentation amplifier for bioimpedance measurements,” IEEE Trans. Biomed. Eng., vol. 40, no.8, pp. 830–833, Aug., 1993.CrossRefGoogle Scholar
  8. 8.
    M. J. Burke and D. T. Gleeson, “A micro power dry-electrode ECG preamplifier,” IEEE Trans. Biomed. Eng., vol. 47, no. 2, pp. 155–162, Feb., 2000.CrossRefGoogle Scholar
  9. 9.
    R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol.44, no. 12, pp. 3232-3243, Dec. 2009.CrossRefGoogle Scholar
  10. 10.
    Q. Fan, J. H. Huijsing, and K. A. A. Makinwa, “A 21 nV/√Hz Chopper-stabilized Multipath Current-feedback Instrumentation Amplifier with 2 µV offset,” IEEE ISSCC. Dig. Tech. Papers, pp. 80–81, Feb. 2010.Google Scholar
  11. 11.
    M. Pertijs, W.J. Kindt, “A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324-325, Feb., 2009.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qinwen Fan
    • 1
    Email author
  • Kofi A. A. Makinwa
    • 2
  • Johan H. Huijsing
    • 3
  1. 1.Mellanox TechnologiesDelfgauwThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.SchipluidenThe Netherlands

Personalised recommendations