Skip to main content

The Chopping Technique

  • Chapter
  • First Online:
  • 2120 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

As briefly explained in Chap. 1, the chopping technique has been applied to convert DC input signals into AC signals that can then be capacitively coupled to the input stage of a capacitively coupled amplifier. Since chopping up-modulates offset and 1/f noise away from DC, high precision, i.e., microvolt offset and low 1/f noise, can be achieved. These characteristics make such amplifiers ideally suited for the amplification of small low-frequency signals. In this chapter, the basic working principle of chopping and its application in precision amplifiers will be discussed. It will be shown that chopping usually results in AC ripple at the chopping frequency, which must then be suppressed. Thus, the techniques to reduce this ripple will also be described. After this, the non-idealities of chopping will be discussed, followed by a summary of its pros and cons. Finally, conclusions will be drawn at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. H. Huijsing, Operational Amplifiers: Theory and Design Second Edition, New York: Springer, 2011.

    Google Scholar 

  2. C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op.amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 15841614, Nov. 1996.

    Google Scholar 

  3. F. Witte, K. A. A. Makinwa and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, Dordrecht: Springer, 2009.

    Google Scholar 

  4. C. Menolfi and Q. Huang, (1999) “A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circuits, 34(3) 415420.

    Google Scholar 

  5. M. Belloni, E. Bonizzoni, A. Fornasari and F. Maloberti, “A micropower chopper.correlated double-sampling amplifier with 2 µV standard deviation offset and 37nV/√Hz input noise density,” IEEE ISSCC Dig. Tech. papers, pp. 7677, Feb. 2010.

    Google Scholar 

  6. F. Butti, P. Bruschi, M. Dei and M. Piotto, “A compact instrumentation amplifier for MEMS thermal sensor interfacing,” Analog Integrated Circuits and Signal Processing, vol. 72, iss. 3, pp. 585594, Sept. 2012.

    Google Scholar 

  7. R. Burt and J. Zhang, “Micropower chopper.stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 27292736, Dec. 2006.

    Google Scholar 

  8. A. Bakker, H. Huisjing, “A CMOS chopper opamp with integrated low-pass filter,” IEEE, ESSCIRC, pp. 200203, Sept. 1997.

    Google Scholar 

  9. Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 21nV/√Hz chopper.stabilized multipath current-feedback instrumentation amplifier with 2 μV offset,” IEEE J. Solid.State Circuits, vol. 47, no. 2, pp. 464475, Feb. 2012.

    Google Scholar 

  10. J. F. Witte, J. H. Huijsing and K. A. A. Makinwa, “A chopper and auto.zero offset-stabilized CMOS instrumentation amplifier,” VLIS Circuits, pp. 210211, Jun. 2009.

    Google Scholar 

  11. Y. Kusuda, “A 5.9 nV/√ Hz chopper operational amplifier with 0.78 μV maximum offset and 28.3 nV/° C offset drift,” IEEE ISSCC Dig. Tech. papers, pp. 242244, Feb. 2011.

    Google Scholar 

  12. R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A chopper current.feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid.State Circuits, vol.44, no. 12, pp. 32323243, Dec. 2009.

    Google Scholar 

  13. J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa and C. Van Hoof, “A 160 µW 8-channel active electrode system for EEG monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, iss. 6, pp. 555567, Dec. 2011.

    Google Scholar 

  14. F. Michel and M. Steyaert, “On.chip gain reconfigurable 1.2 V 24 μW chopping instrumentation amplifier with automatic resistor matching in 0.13 μm CMOS,” IEEE ISSCC Dig. Tech. papers, pp. 372374, Feb. 2012.

    Google Scholar 

  15. R. F. Yazicioglu, P. Merken, R. Puers and C. Van Hoof, “A 60 µW60 nV√Hz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid.State Circuits, vol. 42, no. 5, pp. 11001110, May 2007.

    Google Scholar 

  16. M. Pertijs and W. J. Kindt, “A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324325, Feb. 2009.

    Google Scholar 

  17. A. T. K. Tang, “A 3 μV-offset operational amplifier with 20nV/√Hz input noise PSD at DC employing both chopping and auto zeroing,” IEEE ISSCC Dig. Tech. Papers, pp. 386387, Feb. 2002.

    Google Scholar 

  18. K. Kundert, “Simulating switched-capacitor filters with spectre RF,” http://www.designers-guide.org/Analysis/sc-filters.pdf.

  19. I. E. Opris and G. T. A. A. Kovacs, “A rail-to-rail ping-pong op-amp,” IEEE J. Solid.State Circuits, vol. 31, no. 9, pp. 13201324, Sept. 1996.

    Google Scholar 

  20. Analog Device, “Chapter 8 Analog filters,” http://www.analog.com/library/analogdialogue/archives/43.09/EDCh%208%20filter.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinwen Fan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fan, Q., Makinwa, K.A.A., Huijsing, J.H. (2017). The Chopping Technique. In: Capacitively-Coupled Chopper Amplifiers. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-47391-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47391-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47390-1

  • Online ISBN: 978-3-319-47391-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics