Advertisement

The Chopping Technique

  • Qinwen FanEmail author
  • Kofi A. A. Makinwa
  • Johan H. Huijsing
Chapter
  • 1.2k Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

As briefly explained in Chap.  1, the chopping technique has been applied to convert DC input signals into AC signals that can then be capacitively coupled to the input stage of a capacitively coupled amplifier. Since chopping up-modulates offset and 1/f noise away from DC, high precision, i.e., microvolt offset and low 1/f noise, can be achieved. These characteristics make such amplifiers ideally suited for the amplification of small low-frequency signals. In this chapter, the basic working principle of chopping and its application in precision amplifiers will be discussed. It will be shown that chopping usually results in AC ripple at the chopping frequency, which must then be suppressed. Thus, the techniques to reduce this ripple will also be described. After this, the non-idealities of chopping will be discussed, followed by a summary of its pros and cons. Finally, conclusions will be drawn at the end of the chapter.

Keywords

Notch Filter Charge Injection Simplify Block Diagram Output Ripple Clock Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. H. Huijsing, Operational Amplifiers: Theory and Design Second Edition, New York: Springer, 2011.Google Scholar
  2. 2.
    C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op.amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of IEEE, vol. 84, no. 11, pp. 15841614, Nov. 1996.Google Scholar
  3. 3.
    F. Witte, K. A. A. Makinwa and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, Dordrecht: Springer, 2009.Google Scholar
  4. 4.
    C. Menolfi and Q. Huang, (1999) “A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circuits, 34(3) 415420.Google Scholar
  5. 5.
    M. Belloni, E. Bonizzoni, A. Fornasari and F. Maloberti, “A micropower chopper.correlated double-sampling amplifier with 2 µV standard deviation offset and 37nV/√Hz input noise density,” IEEE ISSCC Dig. Tech. papers, pp. 7677, Feb. 2010.Google Scholar
  6. 6.
    F. Butti, P. Bruschi, M. Dei and M. Piotto, “A compact instrumentation amplifier for MEMS thermal sensor interfacing,” Analog Integrated Circuits and Signal Processing, vol. 72, iss. 3, pp. 585594, Sept. 2012.Google Scholar
  7. 7.
    R. Burt and J. Zhang, “Micropower chopper.stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 27292736, Dec. 2006.Google Scholar
  8. 8.
    A. Bakker, H. Huisjing, “A CMOS chopper opamp with integrated low-pass filter,” IEEE, ESSCIRC, pp. 200203, Sept. 1997.Google Scholar
  9. 9.
    Q. Fan, J. H. Huijsing and K. A. A. Makinwa, “A 21nV/√Hz chopper.stabilized multipath current-feedback instrumentation amplifier with 2 μV offset,” IEEE J. Solid.State Circuits, vol. 47, no. 2, pp. 464475, Feb. 2012.Google Scholar
  10. 10.
    J. F. Witte, J. H. Huijsing and K. A. A. Makinwa, “A chopper and auto.zero offset-stabilized CMOS instrumentation amplifier,” VLIS Circuits, pp. 210211, Jun. 2009.Google Scholar
  11. 11.
    Y. Kusuda, “A 5.9 nV/√ Hz chopper operational amplifier with 0.78 μV maximum offset and 28.3 nV/° C offset drift,” IEEE ISSCC Dig. Tech. papers, pp. 242244, Feb. 2011.Google Scholar
  12. 12.
    R. Wu, K. A. A. Makinwa and J. H. Huijsing, “A chopper current.feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid.State Circuits, vol.44, no. 12, pp. 32323243, Dec. 2009.Google Scholar
  13. 13.
    J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa and C. Van Hoof, “A 160 µW 8-channel active electrode system for EEG monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, iss. 6, pp. 555567, Dec. 2011.Google Scholar
  14. 14.
    F. Michel and M. Steyaert, “On.chip gain reconfigurable 1.2 V 24 μW chopping instrumentation amplifier with automatic resistor matching in 0.13 μm CMOS,” IEEE ISSCC Dig. Tech. papers, pp. 372374, Feb. 2012.Google Scholar
  15. 15.
    R. F. Yazicioglu, P. Merken, R. Puers and C. Van Hoof, “A 60 µW60 nV√Hz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid.State Circuits, vol. 42, no. 5, pp. 11001110, May 2007.Google Scholar
  16. 16.
    M. Pertijs and W. J. Kindt, “A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping,” IEEE ISSCC Dig. Tech. Papers, pp. 324325, Feb. 2009.Google Scholar
  17. 17.
    A. T. K. Tang, “A 3 μV-offset operational amplifier with 20nV/√Hz input noise PSD at DC employing both chopping and auto zeroing,” IEEE ISSCC Dig. Tech. Papers, pp. 386387, Feb. 2002.Google Scholar
  18. 18.
    K. Kundert, “Simulating switched-capacitor filters with spectre RF,” http://www.designers-guide.org/Analysis/sc-filters.pdf.
  19. 19.
    I. E. Opris and G. T. A. A. Kovacs, “A rail-to-rail ping-pong op-amp,” IEEE J. Solid.State Circuits, vol. 31, no. 9, pp. 13201324, Sept. 1996.Google Scholar
  20. 20.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qinwen Fan
    • 1
    Email author
  • Kofi A. A. Makinwa
    • 2
  • Johan H. Huijsing
    • 3
  1. 1.Mellanox TechnologiesDelfgauwThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.SchipluidenThe Netherlands

Personalised recommendations