Skip to main content

Ocular Immunopathology

  • Chapter
  • First Online:
Immunopathology in Toxicology and Drug Development

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The eye has traditionally been regarded as an immune privileged site because inflammatory responses that would otherwise be detrimental to vision are modulated in the ocular environment. Numerous immunosuppressive mechanisms exist in the eye to accomplish this but it is clear that this status can be “broken” such as during infections and in the development of uveitis. Components of the innate immune system that sense pathogen components are present in ocular cells and activation results in the production of pro-inflammatory cytokines. Dendritic cells, which are critical for presenting antigen to the adaptive immune system are also present in the cornea, iris, and retina and can bind and process antigens and then traffic to the local draining lymph node or spleen resulting in antibody production, the generation of pathologic T-cells, or immunosuppressive regulatory T-cells. Innate and adaptive responses may similarly occur in response to the administration of ocular biologic drugs and viral gene delivery vectors, resulting in pathology that is immune-mediated and confounding drug development. This chapter reviews our current understanding of ocular immunology and disease mechanisms, known immunological pathology associated with drug development, comparative anatomical features of the eye, and regulatory aspects specific to ocular drug development and nonclinical testing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akorn (2008) Akten Pharmacology Review – NDA 22221

    Google Scholar 

  • Akorn (2014) Phenylephrine Hydrochloride Ophthalmic Solution Pharmacology Review – NDA 207926

    Google Scholar 

  • Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13(6):438–451. doi:10.1038/nri3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JM (2012) Host response to long acting implants. In: Wright JC, Burgess DJ (eds) Advances in delivery science and technology. Vol long acting injections and implants. Springer (CRS). pp 25–55. doi:10.1007/978-1-4614-0554-2_3

  • Attar M, Brassard J, Kim A, Matsumoto S, Ramos M, Vangyi C (2013) Safety evaluation of ocular drugs. In: Faqi A (ed) A comprehnsive guide to toxicology in preclinical drug development. Academic, Waltham, MA, pp 567–617

    Chapter  Google Scholar 

  • Authier S, Vargas HM, Curtis MJ, Holbrook M, Pugsley MK (2013) Safety pharmacology investigations in toxicology studies: an industry survey. J Pharmacol Toxicol Methods 68(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Barabino S, Chen Y, Chauhan S, Dana R (2012) Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res 31(3):271–285. doi:10.1016/j.preteyeres.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barskey D (2006) Anatomy of the uveal tract. In: Jaeger EA, Tasman W (eds) Duane’s ophthalomology. Lippincott Williams & Wilkens, Philadelphia PA, pp 1–11

    Google Scholar 

  • Bausch & Lomb (2005) Retisert (fluocinolone acetonide intravitreal implant) Pharmacology Review – NDA 021737

    Google Scholar 

  • Besharse JC, Defoe DM (1998) Role of the retinal pigment epithelium in photoreceptor membrane turnover. In: Massey SC, Wolfensberger TW (eds) The retinal pigment epithelium. Oxford University Press, New York, p 152

    Google Scholar 

  • Birke K, Lütjen-Drecoll E, Kerjaschki D, Birke MT (2010) Expression of podoplanin and other lymphatic markers in the human anterior eye segment. Invest Ophthalmol Vis Sci 51:344–354

    Article  PubMed  Google Scholar 

  • Biros D (2008) Anterior chamber-associated immune deviation. Vet Clin North Am Small Anim Pract 38(2):309–321. doi:10.1016/j.cvsm.2007.12.006, vi-vii

    Article  PubMed  Google Scholar 

  • Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19(3):323–344. doi:10.1016/S1350-9462(99)00016-6

    Article  CAS  PubMed  Google Scholar 

  • Bishop PN (2014) Biochemistry. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 3–20. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Bobu C, Lahmam M, Vuillez P, Ouarour A, Hicks D (2008) Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research. Vision Res 48:424–432

    Article  CAS  PubMed  Google Scholar 

  • Boycott B, Wassle H (1999) Parallel processing in the mammalian retina: the Proctor lecture. Invest Ophthalmol Vis Sci 40:1313–1327

    CAS  PubMed  Google Scholar 

  • Brandt CR (2014) Peptide therapeutics for treating ocular surface infections. J Ocul Pharmacol Ther 30(9):691–699. doi:10.1089/jop.2014.0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt CR, Knupfer PB, Boush GA, Gausas RE, Chandler JW (1990) In vivo induction of Ia expression in murine cornea after intravitreal injection of interferon-gamma. Invest Ophthalmol Vis Sci 31(11):2248–2253

    CAS  PubMed  Google Scholar 

  • Bryant-Hudson KM, Gurung HR, Zheng M, Carr DJJ (2014) Tumor necrosis factor alpha and interleukin-6 facilitate corneal lymphiangiogenesis in response to herpes simplex virus 1 infection. Nat Immunol 13:325–332

    Google Scholar 

  • Buchen SY, Calogero D, Hilmantel G, Eydelman MB (2012) Rabbit ocular reactivity to bacterial endotoxin contained in aqueous solution and ophthalmic viscosurgical devices. Ophthalmology 119(7):e4–e10. doi:10.1016/j.ophtha.2012.04.006

    Article  PubMed  Google Scholar 

  • Buelski PJ, Treacy G (2004) Predictive power of preclinical studies in animals for the immunogenicity of recombinant therapeutic proteins in humans. Curr Opin Mol Ther 6:10–16

    Google Scholar 

  • Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6(1):111–122, doi:10.1002

    Article  CAS  PubMed  Google Scholar 

  • Campbell M, Doyle SL (2013) An eye on the future of inflammasomes and drug development in AMD. J Mol Med 91(9):1059–1070. doi:10.1007/s00109-013-1050-0

    Article  CAS  PubMed  Google Scholar 

  • Caspi RR (2006) Ocular autoimmunity: the price of privilege? Immunol Rev 213:23–35. doi:10.1111/j.1600-065X.2006.00439.x

    Article  PubMed  Google Scholar 

  • Caspi RR (2010) A look at autoimmunity and inflammation in the eye. J Clin Invest 120(9):3073–3083. doi:10.1172/jci42440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi RR (2014) Understanding autoimmunity in the eye: from animal models to novel therapies. Discov Med 17(93):155–162

    PubMed  PubMed Central  Google Scholar 

  • Chang JH, McCluskey PJ, Wakefield D (2006) Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol 90(1):103–108. doi:10.1136/bjo.2005.072686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HB, Yamabayashi S, Ou B, Tanaka Y, Ohno S, Tsukahara S (1997) Structure and composition of rat precorneal tear film. A study by an in vivo cryofixation. Invest Ophthalmol Vis Sci 38(2):381–387

    CAS  PubMed  Google Scholar 

  • Chen S, Zhou S, Zang K, Kong F, Liang D, Yan H (2014) CD73 expression in RPE cells is associated with the suppression of conventional CD4 cell proliferation. Exp Eye Res 127:26–36. doi:10.1016/j.exer.2014.05.008

    Article  PubMed  CAS  Google Scholar 

  • Collin SP, Collin HB (1998) A comparative study of the corneal endothelium in vertebrates. Clin Exp Optom 81(6):245–254

    Article  PubMed  Google Scholar 

  • Cook BE, Lucarelli MJ, Lemke BN, Dorzbach RK, Kaufman PL, Forresr L, Greene E, Gabelt BT (2002) Eyelid lymphatics II: a search for drainage patterns in the monkey and correlations with human lymphatics. Ophthal Plast Reconstr Surg 18(2):99–106

    Article  PubMed  Google Scholar 

  • Crafoord S, Ghosh F, Sebag J (2014) Vitreous biochemistry and artificial vitreous. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 81–92. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streinlein JW, Dana R (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA 103(30):11405–11410, doi:10.1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MP, Rosenbaum JT (2000) The human leukocyte antigen complex and chronic ocular inflammatory disorders. Am J Ophthalmol 129(2):235–243

    Article  CAS  PubMed  Google Scholar 

  • de Smet MD, Chan CC (2001) Regulation of ocular inflammation – what experimental and human studies have taught us. Prog Retin Eye Res 20(6):761–797

    Article  PubMed  Google Scholar 

  • De Stefano ME, Mugnaini E (1997) Fine structure of the choroidal coat of the avian eye. Lymphatic vessels. Invest Ophthalmol Vis Sci 38(6):1241–1260

    PubMed  Google Scholar 

  • Denlinger JL, Balaz EA (2014) Hyaluronan and other carbohydrates in the vitreus. In: Sebag J (ed) Vitreous in health and disease. Springer, New York, pp 13–20

    Google Scholar 

  • Desmet CJ, Ishii KJ (2012) Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 12(7):479–491. doi:10.1038/nri3247

    Article  CAS  PubMed  Google Scholar 

  • Dickinson AJ, Gausa RE (2006) Orbital lymphatics: do they exist? Eye 20(10):1145–1148, doi:10.1038

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Parsa L, Nandoskar P, Zhao P, Wu K, Wang Y (2010) Duct system of the rabbit lacrimal gland: structural characteristics and role in lacrimal secretion. Invest Ophthalmol Vis Sci 51(6):2960–2967, doi:10.1167

    Article  PubMed  PubMed Central  Google Scholar 

  • EMEA (2006) Guideline on the limits of genotoxic impurities

    Google Scholar 

  • Evans HE, de Lahunta A (2013) Miller’s anatomy of the dog, 4th edn. Elsevier, New York

    Google Scholar 

  • FDA (2005) Guidance for industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers

    Google Scholar 

  • FDA (2015a) Guidance for industry and Food and Drug Administration staff, endotoxin testing recommendations for single-use intraocular ophthalmic devices

    Google Scholar 

  • FDA (2015b) Guidance for industry. Scientific considerations in demonstrating biosimilarity to a reference product

    Google Scholar 

  • FDA (2015c) Nonclinical safety evaluation of reformulated drug products and products intended for administration by an alternate route guidance for industry and review staff, good review practice

    Google Scholar 

  • Forrester JV (2007) The eye: basic sciences in practice, 3rd edn. Saunders, Edinburgh, New York

    Google Scholar 

  • Forrester JV, Xu H, Kuffova L, Dick AD, McMenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234(1):282–304. doi:10.1111/j.0105-2896.2009.00873.x

    Article  CAS  PubMed  Google Scholar 

  • Forrester JV, Xu H, Lambe T, Cornall R (2008) Immune privilege or privileged immunity? Mucosal Immunol 1(5):372–381. doi:10.1038/mi.2008.27

    Article  CAS  PubMed  Google Scholar 

  • Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332. doi:10.1038/ni.2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraunfelder FT, Fraunfelder FW, Chambers WA (2015) Drug-induced ocular side effects, 7th edn., Elsevier Saunders. ISBN 928-0-323-31984-3

    Google Scholar 

  • Frazier KS, Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS (2015) Scientific and regulatory policy committee points-to-consider paper*: Drug-induced vascular injury associated with nonsmall molecule therapeutics in preclinical development: Part I. Biotherapeutics. Toxicol Pathol. doi:10.1177/0192623315570340

    Google Scholar 

  • Gao J, Liu RT, Cao S, Cui JZ, Wang A, To E, Matsubara JA (2015) NLRP3 inflammasome: activation and regulation in age-related macular degeneration. Mediators Inflamm 2015:690243. doi:10.1155/2015/690243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gausas RE, Gonnering RS, Lemke BN, Dortzbach RK, Sherman DD (1999) Identification of human orbital lymphatics. Ophthal Plast Reconstr Surg 15(4):252–259

    Article  CAS  PubMed  Google Scholar 

  • Gellat KN, Gilger BC, Kern TC (2014) Veterinary ophthalmology, 5th edn. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Genentech I (2006) FDA drug approval package: Lucentis (Ranibizumab) injection

    Google Scholar 

  • Gery I, Chan C-C (2009) Mechanisms of uveitis. In: Yanoff M, Duker JS (eds) Ophthalmology, 3rd edn. Elsevier, China, pp 777–782

    Chapter  Google Scholar 

  • Ghiasi H, Cai S, Slanina S, Nesburn AB, Wechsler SL (1997) Nonneutralizing antibody against the glycoprotein K of herpes simplex virus type-1 exacerbates herpes simplex virus type-1-induced corneal scarring in various virus-mouse strain combinations. Invest Ophthalmol Vis Sci 38(6):1213–1221

    CAS  PubMed  Google Scholar 

  • Goody RJ, Hu W, Shafiee A, Struharik M, Bartels S, Lopez FJ, Lawrence MS (2011) Optimization of laser-induced choroidal neovascularization in African green monkeys. Exp Eye Res 92(6):464–472. doi:10.1016/j.exer.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  • Gregerson DS, Heuss ND, Lew KL, McPherson SW, Ferrington DA (2007) Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T-cell anergy. Invest Ophthalmol Vis Sci 48(10):4654–4663. doi:10.1167/iovs.07-0286

    Article  PubMed  Google Scholar 

  • Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29(6):500–519. doi:10.1016/j.preteyeres.2010.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Guadana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS 12(3):348–360

    Article  CAS  Google Scholar 

  • Gusev AM (1964) Lymph vessels of human conjunctiva. Fed Proc Transl Suppl 23:109901102

    Google Scholar 

  • Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  CAS  PubMed  Google Scholar 

  • Halfter W, Sebag J, Cunningham ET Jr (2014) Vitreoretinal interface and inner limiting membrane. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 165–191. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Hamel CP, Detrick B, Hooks JJ (1990) Evaluation of Ia expression in rat ocular tissues following inoculation with interferon-gamma. Exp Eye Res 50(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9(7):503–513. doi:10.1038/nri2575

    Article  CAS  PubMed  Google Scholar 

  • Harris A, Bingaman D, Ciulla TA, Martin B (2006) Retinal and choroidal blood flow in health and disease. In: Ryan SJ (ed) Retina. Elsevier Mosby, China, pp 83–102

    Chapter  Google Scholar 

  • Hayreh SS (1974) Recent advances in fluorescein fundus angiography. Br J Ophthalmol 58:391–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343(1):175–188. doi:10.1007/s00441-010-1022-4

    Article  CAS  PubMed  Google Scholar 

  • Henao-Mejia J, Elinav E, Strowig T, Flavell RA (2012) Inflammasomes: far beyond inflammation. Nat Immunol 13(4):321–324. doi:10.1038/ni.2257

    Article  CAS  PubMed  Google Scholar 

  • Heuss ND, Lehmann U, Norbury CC, McPherson SW, Gregerson DS (2012) Local activation of dendritic cells alters the pathogenesis of autoimmune disease in the retina. J Immunol 188(3):1191–1200. doi:10.4049/jimmunol.1101621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20(1):29–48

    Article  CAS  PubMed  Google Scholar 

  • Huml RA, Rich C, Chance K (2009) Key challenges to US topical ocular drug development. Regulatory Focus 14:47–52

    Google Scholar 

  • Hutala A, Salminen L, Tahti H, Uusitalo H (2008) Corneal models for the toxicity testing of drugs and drug releasing materials. In: Ashammakhi N (ed) Topics in multifunctional biomaterials and devices, biomaterials and tissue engineering group

    Google Scholar 

  • ICH-M3(R2) (2010) ICH harmonized tripartite guideline, guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals

    Google Scholar 

  • ICH-M7 (2015) Guidance for industry, Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

    Google Scholar 

  • ICH-Q3A(R2) (2006) ICH harmonized tripartite guideline, impurities in new drug substances

    Google Scholar 

  • ICH-Q3B(R2) (2006) ICH Harmonized tripartite guideline, impurities in new drug products

    Google Scholar 

  • ICH-S1A (1995) ICH harmonized tripartite guideline, guideline on the need for carcinogenicity studies of pharmaceuticals

    Google Scholar 

  • ICH-S2(R1) (2011) ICH harmonized tripartite guideline, guideline on genotoxicity testing and data interpretation for pharmaceuticals intended for human use

    Google Scholar 

  • ICH-S6(R1) (2011) ICH Harmonized tripartite guideline, guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals

    Google Scholar 

  • ICH-S7A (2000) ICH harmonized tripartite guideline, safety pharmacology studies for human pharmaceuticals

    Google Scholar 

  • Industry. I-DGf (2008) Genotoxic and carcinogenic impurities in drug substances and products: recommended approaches

    Google Scholar 

  • Ishida K, Panjwani N, Cao Z, Streilein JW (2003) Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 11(2):91–105

    Article  CAS  PubMed  Google Scholar 

  • ISO-15798:2013 (2013) ISO-15798:2013 Ophthalmic implants-ophthalmic viscosurgical devices

    Google Scholar 

  • Izazola-Conde C, Zamora-de la Cruz D, Tenorio-Guajardo G (2011) Ocular and systemic adverse effects of ophthalmic and non ophthalmic medications. Proc West Pharmacol Soc 54:69–72

    CAS  PubMed  Google Scholar 

  • Jensen S, Thomsen AR (2012) Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86(6):2900–2910. doi:10.1128/JVI.05738-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DH (2005) Trabecular meshwork and uveoscleral outflow models. J Glaucoma 14(4):308–310

    Article  PubMed  Google Scholar 

  • Joshi M, Agrawal S, Christoforidis JB (2013) Inflammatory mechanisms of idiopathic epiretinal membrane formation. Mediators Inflamm 2013:192582. doi:10.1155/2013/192582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juliusson B, Bergstrom A, Rohlich P, Ehinger B, van Veen T, Szel A (1994) Complementary cone fields of the rabbit retina. Invest Ophthalmol Vis Sci 35:811–818

    CAS  PubMed  Google Scholar 

  • Kaestel CG, Jorgensen A, Nielsen M, Eriksen KW, Odum N, Holst Nissen M, Ropke C (2002) Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells. Exp Eye Res 74(5):627–637. doi:10.1006/exer.2002.1183

    Article  CAS  PubMed  Google Scholar 

  • Kaplan HJ, Streilein JW, Stevens TR (1975) Transplantation immunology of the anterior chamber of the eye. II Immune response to allogeneic cells. J Immunol 115(3):805–810

    CAS  PubMed  Google Scholar 

  • Karlsetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langman T (2015) Retinal Microglial; just bystander or target for therapy? Prog Retin Eye Res 45:30–57

    Article  Google Scholar 

  • Kaufman J (2013) Antigen processing and presentation: evolution from a bird's eye view. Mol Immunol 55(2):159–161. doi:10.1016/j.molimm.2012.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. doi:10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  • Keenan CM, Baker J, Bradley A, Goodman DG, Harada T, Herbert R, Kaufmann W, Kellner R, Mahler B, Meseck E, Nolte T, Rittinghausen S, Vahle J, Yoshizawa K (2015) International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): progress to date and future plans. Toxicol Pathol 43(5):730–732. doi:10.1177/0192623314560031

    Article  CAS  PubMed  Google Scholar 

  • Kiel JW, Hollingsworth M, Rao R, Chen M, Reitsmer HA (2011) Ciliary blood flow and aqueous humor production. Prog Retin Eye Res 30(1):1–17, doi:10.1016

    Article  CAS  PubMed  Google Scholar 

  • Kijlstra A (1994) The role of cytokines in ocular inflammation. Br J Ophthalmol 78(12):885–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita T, Sakamoto T, Ishibashi T (2014) Hyalocytes: essential vitreous cells in vitreoretinal health and disease. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 151–164. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Kleinman ME, Ambati J (2012) A window to innate neuroimmunity: toll-like receptor-mediated cell responses in the retina. Adv Exp Med Biol 723:3–9. doi:10.1007/978-1-4614-0631-0_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knickelbein JE, Buela KA, Hendricks RL (2014) Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection. Invest Ophthalmol Vis Sci 55(2):1118–1123. doi:10.1167/iovs.13-13523

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohno RI, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, Aiello LP, Ishibashi T (2009) Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol 93(8):1020–1026. doi:10.1136/bjo.2008.155069

    Article  PubMed  Google Scholar 

  • Kolar SS, McDermott AM (2011) Role of host-defence peptides in eye diseases. Cell Mol Life Sci 68(13):2201–2213. doi:10.1007/s00018-011-0713-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs W, Krebs IP (1988) Ultrastructural evidence for lymphatic capillaries in the primate choroid. Arch Ophthalmol 106(11):1615–1616

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Shamsuddin N (2012) Retinal Muller glia initiate innate response to infectious stimuli via toll-like receptor signaling. PLoS One 7(1):e29830. doi:10.1371/journal.pone.0029830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Yu FS (2006) Toll-like receptors and corneal innate immunity. Curr Mol Med 6(3):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 153(1-2):7–15. doi:10.1016/j.jneuroim.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  • Lambiase A, Micera A, Sacchetti M, Mantelli F, Bonini S (2011) Toll-like receptors in ocular surface diseases: overview and new findings. Clin Sci (Lond) 120(10):441–450. doi:10.1042/CS20100425

    Article  CAS  Google Scholar 

  • Leach MW (2013a) Regulatory forum opinion piece: differences between protein-based biologic products (biotherapeutics) and chemical entities (small molecules) of relevance to the toxicologic pathologist. Toxicol Pathol 41(1):128–136. doi:10.1177/0192623312451371

    Article  PubMed  CAS  Google Scholar 

  • Leach MW (2013b) Regulatory forum opinion piece: differences between protein-based biologic products (biotherapeutics) and chemical entities (small molecules) of relevance to the toxicologic pathologist. Toxicol Pathol 41:128–136

    Article  PubMed  CAS  Google Scholar 

  • Leach MW, Rottman JB, Hock MB, Finco D, Rojko JL, Beyer JC (2014) Immunogenicity/hypersensitivity of biologics. Toxicol Pathol 42(1):293–300. doi:10.1177/0192623313510987

    Article  CAS  PubMed  Google Scholar 

  • Lehmann U, Heuss ND, McPherson SW, Roehrich H, Gregerson DS (2010) Dendritic cells are early responders to retinal injury. Neurobiol Dis 40(1):177–184. doi:10.1016/j.nbd.2010.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin P, Menda S, de Juan EJ (2014) Priniciples and practice of intravitreal application of drugs. In: Sebag J (ed) Vitreous: In health and disease. Springer, New York, pp 509–521, DOI 10.1007/978-1-4939-1086-1_30

    Chapter  Google Scholar 

  • Liversidge J, Grabowski P, Ralston S, Benjamin N, Forrester JV (1994) Rat retinal pigment epithelial cells express an inducible form of nitric oxide synthase and produce nitric oxide in response to inflammatory cytokines and activated T cells. Immunology 83(3):404–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liversidge J, McKay D, Mullen G, Forrester JV (1993) Retinal pigment epithelial cells modulate lymphocyte function at the blood-retina barrier by autocrine PGE2 and membrane-bound mechanisms. Cell Immunol 149(2):315–330. doi:10.1006/cimm.1993.1158

    Article  CAS  PubMed  Google Scholar 

  • Lutty GA, Merges C, Threkeld AB, Crone S, McLeod DS (1993) Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci 34:477–487

    CAS  PubMed  Google Scholar 

  • Mai K, Chui JJ, Di Girolamo N, McCluskey PJ, Wakefield D (2014) Role of toll-like receptors in human iris pigment epithelial cells and their response to pathogen-associated molecular patterns. J Inflamm 11:20. doi:10.1186/1476-9255-11-20

    Article  CAS  Google Scholar 

  • Mann PC, Vahle J, Keenan CM, Baker JF, Bradley AE, Goodman DG, Harada T, Herbert R, Kaufmann W, Kellner R, Nolte T, Rittinghausen S, Tanaka T (2012) International harmonization of toxicologic pathology nomenclature: an overview and review of basic principles. Toxicol Pathol 40(4 Suppl):7S–13S

    Article  PubMed  Google Scholar 

  • Masli S, Vega JL (2011) Ocular immune privilege sites. In: Cuturi MC, Anegon I (eds) Suppression and regulation of immune responses, vol 677, Methods in molecular biology. Springer, New York, pp 449–458. doi:10.1007/978-1-60761-869-0

    Chapter  Google Scholar 

  • Massey SC (2006) Functional anatomy of the mammalian retina. In: Ryan SJ (ed) Retina. Elsevier Mosby, China, pp 43–82

    Chapter  Google Scholar 

  • Matsumoto B, Blanks JC, Ryan SJ (1984) Topographic variations in the rabbit and primate internal limiting membrane. Invest Ophthalmol Vis Sci 25(1):71–82

    CAS  PubMed  Google Scholar 

  • May AC (2008) Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J 2:94–101. doi:10.2174/1874364100802010094

    Article  Google Scholar 

  • McDermott AM (2013) Antimicrobial compounds in tears. Exp Eye Res 117:53–61. doi:10.1016/j.exer.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  • McLellan GJ, Teixeira LB (2015) Feline glaucoma. Vet Clin North Am Small Anim Pract 445(6):1307–1333, doi:10.1016

    Article  Google Scholar 

  • McPherson SW, Heuss ND, Pierson MJ, Gregerson DS (2014) Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells. J Neuroinflammation 11:205. doi:10.1186/s12974-014-0205-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meek B, Speijer D, de Jong PT, de Smet MD, Peek R (2003) The ocular humoral immune response in health and disease. Prog Retin Eye Res 22(3):391–415

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Zhang L, Grossniklaus HE (2014) Cell proliferation at the vitreoretinal interface in proliferative vitreoretinopathy and related disorders. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 395–405. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Mo JS, Streilein JW (2001) Immune privilege persists in eyes with extreme inflammation induced by intravitreal LPS. Eur J Immunol 31(12):3806–3815. doi:10.1002/1521-4141(200112)31:12<3806::AID-IMMU3806>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki M (2010) Regional immunity of the eye. Acta Ophthalmol 88(3):292–299. doi:10.1111/j.1755-3768.2009.01757.x

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki M, Sugita S, Kamoi K (2013) Immunological homeostasis of the eye. Prog Retin Eye Res 33:10–27. doi:10.1016/j.preteyeres.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Mowat FM, Peterson-Jones SM, Williamson H, Williams DL, Luthert PJ, Ali RR, Bainbridge JW (2008) Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Mol Vis 14:2518–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munro IC, Renwick AG, Danielewska-Nikiel B (2008) The Threshold of Toxicological Concerns (TTC) in risk assessment. Toxicol Lett 180(2):151–156

    Article  CAS  PubMed  Google Scholar 

  • Novack GD (2009) Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther 85:539–543

    Article  CAS  PubMed  Google Scholar 

  • Nussenblatt RB, Calogero D, Buchen SY, Leder HA, Goodkin M, Eydelman MB (2012) Rabbit intraocular reactivity to endotoxin measured by slit-lamp biomicroscopy and laser flare photometry. Ophthalmology 119(7):e19–e23. doi:10.1016/j.ophtha.2012.04.004

    Article  PubMed  Google Scholar 

  • Nussenblatt RB, Lee RW, Chew E, Wei L, Liu B, Sen HN, Dick AD, Ferris FL (2014) Immune responses in age-related macular degeneration and a possible long-term therapeutic strategy for prevention. Am J Ophthalmol 158(1):5–11. doi:10.1016/j.ajo.2014.03.014, e12

    Article  PubMed  PubMed Central  Google Scholar 

  • OECD (ed) (2013) OECD Guidelines, Test No. 437: Bovine corneal opacity and permeability test method for identifying i) Chemicals inducing serious eye damage and ii) Chemicals not requiring classification for eye irritation or serious eye damage. OECD Publishing, Paris

    Google Scholar 

  • Ollivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg ME, Kaufman PL, Komáromy AM (2004) Comparative morphology of the tapetum lucidum (among selected species). Vet Ophthalmol 7(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Owen JA, Punt J, Stranford SA, Jones PP (2013a) Kuby immunology, 7th edn. WH Freeman & Co, New York, pp 141–182

    Google Scholar 

  • Owen JA, Punt J, Stranford SA, Jones PP (2013b) Kuby immunology, 7th edn. WH Freeman & Co, New York, pp 261–296

    Google Scholar 

  • Owen JA, Punt J, Stranford SA, Jones PP (2013c) Kuby immunology, 7th edn. WH Freeman & Co, New York, pp 1–24

    Google Scholar 

  • Park PJ, Chang M, Garg N, Zhu J, Chang JH, Shukla D (2015) Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol 60(1):60–71. doi:10.1016/j.survophthal.2014.06.001

    Article  PubMed  Google Scholar 

  • Paulsen FP, Berry MS (2006) Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem 41(1):1–53, doi:10.1016

    Article  CAS  PubMed  Google Scholar 

  • Payne AP (1994) The harderian gland: a tercentennial review. J Anat 185(Pt 1):1–49

    PubMed  PubMed Central  Google Scholar 

  • Pearlman E, Johnson A, Adhikary G, Sun Y, Chinnery HR, Fox T, Kester M, McMenamin PG (2008) Toll-like receptors at the ocular surface. Ocul Surf 6(3):108–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A (2013) Host defense at the ocular surface. Int Rev Immunol 32(1):4–18. doi:10.3109/08830185.2012.749400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peczon BD, Peczon JD, Cintron C, Hudson BG (1980) Changes in chemical composition of anterior lens capsules of cataractous human eyes as a function of age. Exp Eye Res 30(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A 287A:1001–1012

    Article  CAS  Google Scholar 

  • Penedones A, Mendes D, Alves C, Marques FB (2015) Drug-induced ocular adverse reactions: review of the safety alerts issued during the last decade. J Ocular Pharmacol Ther 31(5):258–268

    Article  CAS  Google Scholar 

  • Perez VL, Saeed AM, Tan Y, Urbieta M, Cruz-Guilloty F (2013) The eye: a window to the soul of the immune system. J Autoimmun 45:7–14. doi:10.1016/j.jaut.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  • Ponce R, Abad L, Amaravadi L, Gelzleichter T, Gore E, Green J, Gupta S, Herzyk D, Hurst C, Ivens IA, Kawabata T, Maier C, Mounho B, Rup B, Shankar G, Smith H, Thomas P, Wierda D (2009) Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol 54(2):164–182

    Article  CAS  PubMed  Google Scholar 

  • Prince JH, McConnell DG (1964) Retina and optic nerve. In: Prince JH (ed) The rabbit in eye research. Charles C Thomas, Springville, pp 385–448

    Google Scholar 

  • Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, Nakamura T, Sakamoto T, Ishibashi T (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89(4):513–517, doi:10.1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada JA, Shelton S, Norton TT (2006) The sclera and myopia. Exp Eye Res 82(2):185–200, doi:10.1016

    Article  PubMed  CAS  Google Scholar 

  • Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13(4):333–342. doi:10.1038/ni.2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redfern RL, McDermott AM (2010) Toll-like receptors in ocular surface disease. Exp Eye Res 90(6):679–687. doi:10.1016/j.exer.2010.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regeneron Pharmaceuticals I (2011) FDA Drug Approval Package: Eylea (aflibercept) injection

    Google Scholar 

  • Reikine S, Nguyen JB, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342. doi:10.3389/fimmu.2014.00342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Riordan-Eva P (2011) Anatomy & embryology of the eye. In: Riordan-Eva P, Cunningham ET (eds) Vaughan and Asbury's General Ophthalmology. 18 edn

    Google Scholar 

  • Rocha G, Baines MG, Deschenes J (1992) The immunology of the eye and its systemic interactions. Crit Rev Immunol 12(3-4):81–100

    CAS  PubMed  Google Scholar 

  • Rojko JL, Evans MG, Price SA, Han B, Waine G, DeWitte M, Haynes J, Freimark B, Martin P, Raymond JT, Evering W, Rebelatto MC, Schenck E, Horvath C (2014) Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies. Toxicol Pathol 42(4):725–764. doi:10.1177/0192623314526475

    Article  CAS  PubMed  Google Scholar 

  • Rowe AM, St Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL (2013) Herpes keratitis. Prog Retin Eye Res 32:88–101. doi:10.1016/j.preteyeres.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  • Saidi T, Mbarek S, Chaouacha-Chekir RB, Hicks D (2011) Diurnal rodents as animal models of human central vision: characterisation of the retina of the sand rat Psammomys obsesus. Graefes Arch Clin Exp Ophthalmol 249:1029–1037

    Article  PubMed  Google Scholar 

  • Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 331:222–228

    Article  Google Scholar 

  • Samuelson DA (2007) Ophthalmic anatomy. In: Gelatt KN (ed) Veterinary ophthalmology. Blackwell, Ames, pp 37–148

    Google Scholar 

  • Samuelson DA, Streit A (2012) Microanatomy of the anterior uveoscleral outflow pathway in normal and primary open-angle glaucomatous dogs. Vet Ophthalmol 15(Suppl 1):47–53, doi:10.1111

    Article  PubMed  Google Scholar 

  • Schafer KA, Render JA (2013) Toxicologic pathology of the eye: alterations of the lens and posterior segment. In: Weir AB, Collins MJ (eds) Assessing ocular toxicology in laboratory animals. Humana, New York, pp 219–257

    Google Scholar 

  • Schroedl F, Brehmer A, Neuhuber WL, Kruse FE, May CA, Cursiefen C (2008) The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci 49(12):5222–5228, doi:10.1167

    Article  PubMed  Google Scholar 

  • Schumann RG, Eibl KH, Zhao F, Scheerbaum M, Scheler R, Schaumberger MM, Wehnes H, Walch AK, Haritoglou C, Kampik A, Gandorfer A (2011) Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes. Invest Ophthalmol Vis Sci 52(11):7822–7834. doi:10.1167/iovs.11-7514

    Article  CAS  PubMed  Google Scholar 

  • Sebag J, Buckingham B, Charles MA, Reiser K (1992) Biochemical abnormalities in vitreous of humans with proliferative diabetic retinopathy. Arch Ophthalmol 110(10):1472–1476

    Article  CAS  PubMed  Google Scholar 

  • Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36:49–62

    Article  CAS  PubMed  Google Scholar 

  • Silva NC, Sarmento B, Pintado M (2013) The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents 41(1):5–10. doi:10.1016/j.ijantimicag.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  • Silver PB, Horai R, Chen J, Jittayasothorn Y, Chan CC, Villasmil R, Kesen MR, Caspi RR (2015) Retina-specific T regulatory cells bring about resolution and maintain remission of autoimmune uveitis. J Immunol 194(7):3011–3019. doi:10.4049/jimmunol.1402650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RS (2002) Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. CRC, Boca Raton, FL

    Google Scholar 

  • Sonoda KH, Sakamoto T, Qiao H, Hisatomi T, Oshima T, Tsutsumi-Miyahara C, Exley M, Balk SP, Taniguchi M, Ishibashi T (2005) The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity: vitreous cavity-associated immune deviation. Immunology 116(3):390–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Phys Rev 85:845–881

    CAS  Google Scholar 

  • Streilein JW (1990) Anterior chamber associated immune deviation: the privilege of immunity in the eye. Surv Ophthalmol 35(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3(11):879–889. doi:10.1038/nri1224

    Article  CAS  PubMed  Google Scholar 

  • Streit T, Miller PE, Ellison B, Thackenberry EA, Schuetz C, Sorentag P, Farmin C, Christian BJ, Bantsoer V (2015) Determination of a No Observable Effect Level (NOEL) for endotoxin following a single intravitreal administration to male dutch belted rabbits. In: ARVO, Denver, Colorado, 2015

    Google Scholar 

  • Thomasy SM, Eaton JS, Timberlake MJ, Miller PE, Matsumoto S, Murphy CL (2016) Species differences in the geometry of the anterior segment differentially affect anterior chamber cell scoring systems in laboratory animals. J Ocul Pharmacol Ther 32(1):28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres PF, Kijlstra A (2001) The role of cytokines in corneal immunopathology. Ocul Immunol Inflamm 9(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Tozer K, Johnson MW, Sebag J (2014) Vitreous aging and posterior vitreous detachment. In: Sebag J (ed) Vitreous: in health and disease. Springer, New York, pp 131–150. doi:10.1007/978-1-4939-1086-1

    Chapter  Google Scholar 

  • Treacy G, Martin B (2008) Preclinical safety evaluation of monoclonal antibodies. In: Cavagnaro JA (ed) Preclinical safety evaluation of biopharmaceuticals: a science-based approach to facilitating clinical trials. John Wiley, Hoboken, NJ, pp 587–599

    Chapter  Google Scholar 

  • Tripathi B, Ashton N (1971) Vaso-glial connections in the rabbit retina. Br J Ophthalmol 55:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueta M, Kawai T, Yokoi N, Akira S, Kinoshita S (2011) Contribution of IPS-1 to polyI:C-induced cytokine production in conjunctival epithelial cells. Biochem Biophys Res Commun 404(1):419–423. doi:10.1016/j.bbrc.2010.11.136

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Kinoshita S (2012) Ocular surface inflammation is regulated by innate immunity. Prog Retin Eye Res 31(6):551–575. doi:10.1016/j.preteyeres.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  • Van Dooremaal JC (1873) Die entwicklung der in fremden grund versetzten lebenden gewaba. Albrecht Von Graefes Arch Klin Exp Ophthalmol 19:358

    Article  Google Scholar 

  • Vanaja SK, Rathinam VA, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25(5):308–315. doi:10.1016/j.tcb.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verthelyi D, Wang V (2010) Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One 5(12):e15252. doi:10.1371/journal.pone.0015252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace CA, Moir G, Malone DF, Duncan L, Devarajan G, Crane IJ (2013) Regulation of T-lymphocyte CCL3 and CCL4 production by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 54(1):722–730. doi:10.1167/iovs.12-10602

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation, 1st edn. Cranbrook Institute of Science, New York

    Book  Google Scholar 

  • Weir A, Collins M (2013) Assessing ocular toxicology in laboratory animals. Humana, New York

    Book  Google Scholar 

  • Wilkerson CL, Syed NA, Fisher MR, Robinson NL, Wallow IH, Albert DM (1996) Melanocytes and iris color. Light microscopic findings. Arch Ophthalmol 114:437–442

    Article  CAS  PubMed  Google Scholar 

  • Wilson SL, Ahearne M, Hopkinson A (2015) An overview of current techniques for ocular toxicity testing. Toxicology 327:32–46

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. doi:10.1038/ni1087

    Article  CAS  PubMed  Google Scholar 

  • Yücel YH, Johnston MG, Ly T, Patel M, Drake B, Gümüş E, Fraenkl SA, Moore S, Tobbia D, Armstrong D, Horvath E, Gupta N (2009) Identification of lymphatics in the ciliary body of the human eye: a novel “uveolymphatic” outflow pathway. Exp Eye Res 89:810–819, doi:10.1016

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Gandorfer A, Haritoglou C, Scheler R, Schaumberger MM, Kampik A, Schumann RG (2013) Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina 33(1):77–88. doi:10.1097/IAE.0b013e3182602087

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meg Ferrell Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramos, M.F., Teixeira, L., Brandt, C.R., Auyeung-Kim, D. (2017). Ocular Immunopathology. In: Parker, G. (eds) Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-47385-7_14

Download citation

Publish with us

Policies and ethics