Skip to main content

Flow Cytometry and Immunophenotyping in Drug Development

  • Chapter
  • First Online:

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

As increasing numbers of novel therapeutics impact immune responses either directly or indirectly, it is necessary to employ techniques to evaluate immune system alterations. Flow cytometry is an important tool that can be applied throughout drug development (e.g. early discovery to clinical monitoring) to evaluate immunobiological and immunotoxicological alterations resultant from therapies. Traditionally, flow cytometry has broad applications in assessing the identity of specific cell populations and their composition within bodily fluids and tissues. Application of cellular phenotype for routine immunophenotyping of cell populations has expanded to include enhanced immuno-phenotyping of cell subsets (e.g. Tregs, Th1, Th2, etc.) and functional immunophenotyping based on unique expression of cytokines, signaling markers and other markers identifying cell populations with specific functions. Although powerful in its ability to determine immunophenotyping, flow cytometry is increasingly being used to interrogate numerous other parameters including, cellular viability (e.g. apoptosis versus necrosis), cellular proliferation, phagocytosis, calcium influence, nucleic acid content, oxidative stress, signaling events and phosphorylation in signaling cascades and numerous others. Instrumentation, reagents and species-specific considerations, sample preparation and preservation, data acquisition, analysis and reporting and validation are all critical considerations in flow cytometry which are covered in this chapter. Ultimately, integration of flow cytometry with numerous other data sets (e.g. immunotoxicology, immunogenicity, pathology, etc.) are critical to develop a comprehensive picture of immune system alterations in drug development which have direction implications on human health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APC:

Allophycocyanin

CD:

Clusters of differentiation; e.g. CD4, CD8

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

CBC:

Complete blood count

DMSO:

Dimethylsulfoxide

FMO:

Fluorescence minus one

FACS:

Fluoroescent antibody cell sorting

FITC:

Fluoresceine isothiocyanate

GLP:

Good laboratory practice

IHC:

Immunohistochemistry

Ig:

Immunoglobulin; e.g. IgG, IgM

NTE:

Novel therapeutities

MHC:

Major histocompatibility complex

PBMCs:

Peripheral blood mononuclear cells

PE:

Phycoerythrin

PMT:

Photomultiplier tubes

Th1/Th2/Th17:

T helper 1, T helper 2 and T helper 17 cells

Treg:

Regulatory T cells

References

  • Autissier P, Soulas C, Burdo TH, Williams KC (2010) Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity. J Immunol Methods 360(1–2):119–128. doi:10.1016/j.jim.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baan C, Bouvy A, Vafadari R, Weimar W (2012) Phospho-specific flow cytometry for pharmacodynamic monitoring of immunosuppressive therapy in transplantation. Transplant Res 1(1):20. doi:10.1186/2047-1440-1-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett D, Louzao R, Gambell P, De J, Oldaker T, Hanson CA (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part IV - postanalytic considerations. Cytometry B Clin Cytom 84(5):309–314. doi:10.1002/cyto.b.21107

    Article  PubMed  Google Scholar 

  • Baron M, Boulanger CM, Staels B, Tailleux A (2012) Cell-derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation? J Cell Mol Med 16(7):1365–1376. doi:10.1111/j.1582-4934.2011.01486.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biancotto A, Fuchs JC, Williams A, Dagur PK, McCoy JP Jr (2011) High dimensional flow cytometry for comprehensive leukocyte immunophenotyping (CLIP) in translational research. J Immunol Methods 363(2):245–261. doi:10.1016/j.jim.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  • Branch SK, Agranat I (2014) "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity. J Med Chem 57(21):8729–8765. doi:10.1021/jm402001w

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Green CL, Jones N, Stewart JJ, Fraser S, Howell K, Xu Y, Hill CG, Wiwi CA, White WI, O’Brien PJ, Litwin V (2015) Recommendations for the evaluation of specimen stability for flow cytometric testing during drug development. J Immunol Methods. doi:10.1016/j.jim.2015.01.008

    Google Scholar 

  • Burchiel SW, Lauer FT, Gurule D, Mounho BJ, Salas VM (1999) Uses and future applications of flow cytometry in immunotoxicity testing. Methods 19(1):28–35. doi:10.1006/meth.1999.0824

    Article  CAS  PubMed  Google Scholar 

  • Burns-Naas LA, Kerkvliet NI, Laskin DL, Borner CD, Burchiel SW (2007) The use of multiparameter flow cytometry in immunotoxicology and immunopharmacology. In: Luebke R, House R, Kimber I (eds) Immunotoxicology and immunopharmacology, 3rd edn. CRC Press, Boca Raton, FL, pp 97–124

    Google Scholar 

  • Cecic IK, Li G, MacAulay C (2012) Technologies supporting analytical cytology: clinical, research and drug discovery applications. J Biophotonics 5(4):313–326. doi:10.1002/jbio.201100093

    Article  PubMed  Google Scholar 

  • Chapman GV (2000) Instrumentation for flow cytometry. J Immunol Methods 243(1–2):3–12

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay PK, Perfetto SP, Roederer M (2004) The colorful future of cell analysis by flow cytometry. Discov Med 4(23):255–262

    PubMed  Google Scholar 

  • Chattopadhyay PK, Perfetto SP, Yu J, Roederer M (2010) The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):334–348. doi:10.1002/wnan.75

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972–977. doi:10.1038/nm1371

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen F, Cik M, Gustin E (2012) Phaedra, a protocol-driven system for analysis and validation of high-content imaging and flow cytometry. J Biomol Screen 17(4):496–506. doi:10.1177/1087057111432885

    Article  CAS  PubMed  Google Scholar 

  • Coulter WH (1953) Means for counting particles suspended in a fluid. United Stated Patent 2656508. http://www.freepatentsonline.com/2656508.html

  • Dabdoub SM, Ray WC, Justice SS (2011) FIND: a new software tool and development platform for enhanced multicolor flow analysis. BMC Bioinformatics 12:145. doi:10.1186/1471-2105-12-145

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis BH, Dasgupta A, Kussick S, Han JY, Estrellado A (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part II - preanalytical issues. Cytometry B Clin Cytom 84(5):286–290. doi:10.1002/cyto.b.21105

    Article  PubMed  Google Scholar 

  • Davis C, Wu X, Li W, Fan H, Reddy M (2011) Stability of immunophenotypic markers in fixed peripheral blood for extended analysis using flow cytometry. J Immunol Methods 363(2):158–165. doi:10.1016/j.jim.2010.09.029

    Article  CAS  PubMed  Google Scholar 

  • DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, Khan M, Tacey R, Hill H, Celniker A (2003) Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res 20(11):1885–1900

    Article  CAS  PubMed  Google Scholar 

  • Dunne JF, Maecker HT (2011) Flow cytometry. In: Nijkamp FP, Parnham MJ (eds) Principles of immunopharmacology. Springer Basel, Basel, Switzerland, pp 221–236

    Chapter  Google Scholar 

  • Elmore SA (2006a) Enhanced histopathology of mucosa-associated lymphoid tissue. Toxicol Pathol 34(5):687–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2006b) Enhanced histopathology of the bone marrow. Toxicol Pathol 34(5):666–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2006c) Enhanced histopathology of the lymph nodes. Toxicol Pathol 34(5):634–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2006d) Enhanced histopathology of the spleen. Toxicol Pathol 34(5):648–655

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2006e) Enhanced histopathology of the thymus. Toxicol Pathol 34(5):656–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmore SA (2010) Enhanced histopathology evaluation of lymphoid organs. Methods Mol Biol 598:323–339. doi:10.1007/978-1-60761-401-2_22

    Article  PubMed  Google Scholar 

  • Elmore SA (2012) Enhanced histopathology of the immune system: a review and update. Toxicol Pathol 40(2):148–156

    Article  PubMed  Google Scholar 

  • Ezzelle J, Rodriguez-Chavez IR, Darden JM, Stirewalt M, Kunwar N, Hitchcock R, Walter T, D’Souza MP (2008) Guidelines on good clinical laboratory practice: bridging operations between research and clinical research laboratories. J Pharm Biomed Anal 46(1):18–29. doi:10.1016/j.jpba.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  • Feher K, Kirsch J, Radbruch A, Chang HD, Kaiser T (2014) Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics 30(23):3372–3378. doi:10.1093/bioinformatics/btu575

    Article  CAS  PubMed  Google Scholar 

  • Ferbas J, Schroeder MJ (2011) Instrument validation for regulated studies. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 267–278

    Google Scholar 

  • Freer G, Rindi L (2013) Intracellular cytokine detection by fluorescence-activated flow cytometry: basic principles and recent advances. Methods 61(1):30–38. doi:10.1016/j.ymeth.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  • Fuggetta MP, Lanzilli G, Fioretti D, Rinaldi M (2009) In vitro end points for the assessment of cellular immune response-modulating drugs. Expert Opin Drug Discovery 4(5):473–493. doi:10.1517/17460440902821632

    Article  CAS  Google Scholar 

  • Gossett KA, Narayanan PK, Williams DM, Gore ER, Herzyk DJ, Hart TK, Sellers TS (1999) Flow cytometry in the preclinical development of biopharmaceuticals. Toxicol Pathol 27(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Green CL, Brown L, Stewart JJ, Xu Y, Litwin V, Mc Closkey TW (2011) Recommendations for the validation of flow cytometric testing during drug development: I instrumentation. J Immunol Methods 363(2):104–119. doi:10.1016/j.jim.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  • Hadrup SR, Maurer D, Laske K, Frosig TM, Andersen SR, Britten CM, van der Burg SH, Walter S, Gouttefangeas C (2015) Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells. Cytometry A 87(1):37–48. doi:10.1002/cyto.a.22575

    Article  PubMed  Google Scholar 

  • Hedley DW (2011) Use of flow cytometry to study drug target inhibition in laboratory animals and in early-phase clinical trials. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 151–168

    Google Scholar 

  • Hedley DW, Chow S, Goolsby C, Shankey TV (2008) Pharmacodynamic monitoring of molecular-targeted agents in the peripheral blood of leukemia patients using flow cytometry. Toxicol Pathol 36(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Herzenberg LA, Sweet RG (1976) Fluorescence-activated cell sorting. Sci Am 234(3):108–117

    Article  CAS  PubMed  Google Scholar 

  • Hill CG, Wu DY, Ferbas J, VLitwin V, Reddy MP (2011) Regulatory compliances and method validation. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 243–267

    Google Scholar 

  • Hulett HR, Bonner WA, Barrett J, LA H (2014) Pillars article: cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969. 166: 747-749. J Immunol 193(5):2045–2047

    CAS  PubMed  Google Scholar 

  • Hulspas R, O’Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76(6):355–364. doi:10.1002/cyto.b.20485

    Article  PubMed  Google Scholar 

  • Krutzik PO, Bendall SC, BHale MB, Irish JM, Nolan GP (2011) Phospho flow cytometry: single-cell signaling networks in next-generation drug discovery and patient stratification. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 303–334

    Google Scholar 

  • Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110(3):206–221. doi:10.1016/j.clim.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  • Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1(3):1507–1516. doi:10.1038/nprot.2006.268

    Article  CAS  PubMed  Google Scholar 

  • Lappin PB (2010) Flow cytometry in preclinical drug development. Methods Mol Biol 598:303–321. doi:10.1007/978-1-60761-401-2_21

    Article  CAS  PubMed  Google Scholar 

  • Lappin PB, Black LE (2003) Immune modulator studies in primates: the utility of flow cytometry and immunohistochemistry in the identification and characterization of immunotoxicity. Toxicol Pathol 31(Suppl):111–118

    CAS  PubMed  Google Scholar 

  • Le Meur N, Rossini A, Gasparetto M, Smith C, Brinkman RR, Gentleman R (2007) Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71(6):393–403. doi:10.1002/cyto.a.20396

    Article  PubMed  PubMed Central  Google Scholar 

  • Litwin V, Andahazy J (2011) Monitoring the cellular components of the immune system during clinical trials: a translational medicine approach. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 189–204

    Google Scholar 

  • Maecker HT, Frey T, Nomura LE, Trotter J (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62(2):169–173. doi:10.1002/cyto.a.20092

    Article  PubMed  Google Scholar 

  • Njemini R, Onyema OO, Renmans W, Bautmans I, De Waele M, Mets T (2014) Shortcomings in the application of multicolour flow cytometry in lymphocyte subsets enumeration. Scand J Immunol 79(2):75–89. doi:10.1111/sji.12142

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman MR, Zijenah LS (2008) CD4 T cell measurements in the management of antiretroviral therapy – A review with an emphasis on pediatric HIV-infected patients. Cytometry B Clin Cytom 74 (Suppl 1): S19–S26. doi:10.1002/cyto.b.20398

  • O’Hara DM, Theobald V (2011) Immunogenicity testing using flow cytometry. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 205–224

    Google Scholar 

  • O’Hara DM, Xu Y, Liang Z, Reddy MP, Wu DY, Litwin V (2011) Recommendations for the validation of flow cytometric testing during drug development: II assays. J Immunol Methods 363(2):120–134. doi:10.1016/j.jim.2010.09.036

    Article  PubMed  Google Scholar 

  • Owens MA, Vall HG, Hurley AA, Wormsley SB (2000) Validation and quality control of immunophenotyping in clinical flow cytometry. J Immunol Methods 243(1–2):33–50

    Article  CAS  PubMed  Google Scholar 

  • Pala P, Hussell T, Openshaw PJ (2000) Flow cytometric measurement of intracellular cytokines. J Immunol Methods 243(1–2):107–124

    Article  CAS  PubMed  Google Scholar 

  • Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A (2013) Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol 31(7):415–425. doi:10.1016/j.tibtech.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  • Perez OD, Krutzik PO, Nolan GP (2004) Flow cytometric analysis of kinase signaling cascades. Methods Mol Biol 263:67–94. doi:10.1385/1-59259-773-4:067

    CAS  PubMed  Google Scholar 

  • Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M (2012) Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat Protoc 7(12):2067–2079. doi:10.1038/nprot.2012.126

    Article  CAS  PubMed  Google Scholar 

  • Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655. doi:10.1038/nri1416

    Article  CAS  PubMed  Google Scholar 

  • Pinto LA, Trivett MT, Wallace D, Higgins J, Baseler M, Terabe M, Belyakov IM, Berzofsky JA, Hildesheim A (2005) Fixation and cryopreservation of whole blood and isolated mononuclear cells: Influence of different procedures on lymphocyte subset analysis by flow cytometry. Cytometry B Clin Cytom 63(1):47–55. doi:10.1002/cyto.b.20038

    Article  PubMed  Google Scholar 

  • Raveche E, Abbasi F, Yuan Y, Salerna E, Kasar S, Marti GE (2011) Introduction to flow cytometry. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 3–22

    Google Scholar 

  • Reagan WJ, Irizarry-Rovira A, Poitout-Belissent F, Bolliger AP, Ramaiah SK, Travlos G, Walker D, Bounous D, Walter G (2011) Best practices for evaluation of bone marrow in nonclinical toxicity studies. Toxicol Pathol 39(2):435–448

    Article  PubMed  Google Scholar 

  • Robinson JP, Rajwa B, Patsekin V, Davisson VJ (2012) Computational analysis of high-throughput flow cytometry data. Expert Opin Drug Discovery 7(8):679–693. doi:10.1517/17460441.2012.693475

    Article  Google Scholar 

  • Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    Article  CAS  PubMed  Google Scholar 

  • Roederer M (2002) Compensation in flow cytometry. Current protocols in cytometry/editorial board, J Paul Robinson, managing editor [et al] Chapter 1: Unit 1 14. doi:10.1002/0471142956.cy0114s22

    Google Scholar 

  • Schwartz A, Gaigalas AK, Wang L, Marti GE, Vogt RF, Fernandez-Repollet E (2004) Formalization of the MESF unit of fluorescence intensity. Cytometry B Clin Cytom 57(1):1–6. doi:10.1002/cyto.b.10066

    Article  PubMed  Google Scholar 

  • Services USD oHaH (2006) Guidance for industry: S8 immunotoxicity studies for human pharmaceuticals. Office of Communications, Training and Manufacturers Assistance, HFM-40, Food and Drug Administration, Rockville, MD

    Google Scholar 

  • Sklar LA, Carter MB, Edwards BS (2007) Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr Opin Pharmacol 7(5):527–534. doi:10.1016/j.coph.2007.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PJ, Edward R, Errington RJ (2011) Recent advances in flow cytometry: platforms, tools, and challenges for data analysis. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 23–54

    Google Scholar 

  • Stewart JC, Villasmil ML, Frampton MW (2007) Changes in fluorescence intensity of selected leukocyte surface markers following fixation. Cytometry A 71(6):379–385. doi:10.1002/cyto.a.20392

    Article  PubMed  Google Scholar 

  • Tanqri S, Vall H, Kaplan D, Hoffman B, Purvis N, Porwit A, Hunsberger B, Shankey TV (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part III - analytical issues. Cytometry B Clin Cytom 84(5):291–308. doi:10.1002/cyto.b.21106

    Article  PubMed  Google Scholar 

  • Vesterqvist O, Reddy MP (2011) Introduction to biomarkers. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 55–68

    Google Scholar 

  • Visich J, Ponce R (2008) Science and judgement in establishing a safe starting dose for firt-in-human trials of biopharmacueticals. In: Cavagnaro J (ed) Preclinical safety evaluation of biopharmacueticals: a science-based approach to facilitating clinical trials. Wiley, Hoboken, NJ, pp 971–984

    Google Scholar 

  • Weinberg A, Song LY, Wilkening C, Sevin A, Blais B, Louzao R, Stein D, Defechereux P, Durand D, Riedel E, Raftery N, Jesser R, Brown B, Keller MF, Dickover R, McFarland E, Fenton T (2009) Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization. Clin Vaccine Immunol 16(8):1176–1186. doi:10.1128/CVI.00342-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg A, Song LY, Wilkening CL, Fenton T, Hural J, Louzao R, Ferrari G, Etter PE, Berrong M, Canniff JD, Carter D, Defawe OD, Garcia A, Garrelts TL, Gelman R, Lambrecht LK, Pahwa S, Pilakka-Kanthikeel S, Shugarts DL, Tustin NB (2010) Optimization of storage and shipment of cryopreserved peripheral blood mononuclear cells from HIV-infected and uninfected individuals for ELISPOT assays. J Immunol Methods 363(1):42–50. doi:10.1016/j.jim.2010.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter JM, Jacobson P, Bullough B, Christensen AP, Boyer M, Reems JA (2014) Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy 16(7):965–975. doi:10.1016/j.jcyt.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  • Wood B, Jevremovic D, Bene MC, Yan M, Jacobs P, Litwin V (2013) Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part V - assay performance criteria. Cytometry B Clin Cytom 84(5):315–323. doi:10.1002/cyto.b.21108

    Article  PubMed  Google Scholar 

  • Wyant T, Lackey A, Green M (2008) Validation of a flow cytometry based chemokine internalization assay for use in evaluating the pharmacodynamic response to a receptor antagonist. J Transl Med 6:76. doi:10.1186/1479-5876-6-76

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Richards SM (2011) Recommendations for the development and validation of flow cytometric methods for pharmacokinetic studies. In: Litwin V, Marder P (eds) Flow cytometry in drug discovery and development. John Wiley & Sons, Inc., Hoboken, NJ, pp 225–240

    Google Scholar 

  • Zhu H, Ozcan A (2013) Wide-field fluorescent microscopcy and fluorescent imaging flow cytometry on a cell phone. J Vis Exp 74. doi:10.3791/50451

    Google Scholar 

  • Zhu H, Ozcan A (2015) Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis. Methods Mol Biol 1256:171–190

    Article  CAS  PubMed  Google Scholar 

  • Zucker RM, Chua M (2010) Evaluation and purchase of confocal microscopes: numerous factors to consider. Curr Protoc Cytometry/editorial board, J Paul Robinson, managing editor [et al] Chapter 2: Unit2 16. doi:10.1002/0471142956.cy0216s54

    Google Scholar 

  • Zucker RM, Fisher NC (2013) Evaluation and purchase of an analytical flow cytometer: some of the numerous factors to consider. Curr Protoc Cytometry/editorial board, J Paul Robinson, managing editor [et al] Chapter 1: Unit1 28. doi:10.1002/0471142956.cy0128s63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey L. Papenfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Papenfuss, T.L. (2017). Flow Cytometry and Immunophenotyping in Drug Development. In: Parker, G. (eds) Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-47377-2_6

Download citation

Publish with us

Policies and ethics