Advertisement

Forecasting Store Foot Traffic Using Facial Recognition, Time Series and Support Vector Machines

  • Paulo CortezEmail author
  • Luís Miguel Matos
  • Pedro José Pereira
  • Nuno Santos
  • Duarte Duque
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 527)

Abstract

In this paper, we explore data collected in a pilot project that used a digital camera and facial recognition to detect foot traffic to a sports store. Using a time series approach, we model daily incoming store traffic under three classes (all faces, female, male) and compare six forecasting approaches, including Holt-Winters (HW), a Support Vector Machine (SVM) and a HW-SVM hybrid that includes other data features (e.g., weather conditions). Several experiments were held, under a robust rolling windows scheme that considers up to one week ahead predictions and two metrics (predictive error and estimated store benefit). Overall, competitive results were achieved by the SVM (all faces), HW (female) and HW-SVM (male) methods, which can potentially lead to valuable gains (e.g., enhancing store marketing or human resource management).

Keywords

Data mining Facial recognition Time series forecasting Support vector machine 

Notes

Acknowledgments

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

References

  1. 1.
    Alahi, A., Ramanathan, V., Fei-Fei, L.: Socially-aware large-scale crowd forecasting. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2211–2218. IEEE (2014)Google Scholar
  2. 2.
    Cortez, P.: Data mining with neural networks and support vector machines using the r/rminer tool. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 572–583. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14400-4_44 CrossRefGoogle Scholar
  3. 3.
    Cortez, P.: Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, Spain, pp. 3694–3701. IEEE, July 2010Google Scholar
  4. 4.
    Cortez, P., Embrechts, M.J.: Using sensitivity analysis and visualization techniques to open black box data mining models. Inf. Sci. 225, 1–17 (2013)CrossRefGoogle Scholar
  5. 5.
    Cortez, P., Rio, M., Rocha, M., Sousa, P.: Internet traffic forecasting using neural networks. In: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN 2006), Vancouver, Canada, pp. 4942–4949. IEEE, July 2006Google Scholar
  6. 6.
    Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 13, 253–263 (2012)MathSciNetGoogle Scholar
  7. 7.
    Donate, J.P., Cortez, P., Sánchez, G.G., De Miguel, A.S.: Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble. Neurocomputing 109, 27–32 (2013)CrossRefGoogle Scholar
  8. 8.
    Duque, D., Santos, H., Cortez, P.: Prediction of abnormal behaviors for intelligent video surveillance systems. In: CIDM, pp. 362–367. IEEE (2007)Google Scholar
  9. 9.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: a constant time collaborative filtering algorithm. Inf. Retrieval 4(2), 133–151 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hyndman, R., Khandakar, Y.: Automatic time series forecasting: the forecast package for r 7, 2008 (2007). http://www.jstatsoft.org/v27/i03
  12. 12.
    Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33765-9_15 CrossRefGoogle Scholar
  13. 13.
    Ma, S., Fildes, R., Huang, T.: Demand forecasting with high dimensional data: the case of sku retail sales forecasting with intra- and inter-category promotional information. Eur. J. Oper. Res. 249(1), 245–257 (2016)CrossRefGoogle Scholar
  14. 14.
    Makridakis, S., Weelwright, S., Hyndman, R.: Forecasting: Methods and Applications, 3rd edn. Wiley, New York (1998)Google Scholar
  15. 15.
    R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2015)Google Scholar
  16. 16.
    Segetlija, Z., et al.: New approaches to the modern retail management. Interdisc. Manage. Res. 5, 177–184 (2009)Google Scholar
  17. 17.
    Stepnicka, M., Cortez, P., Donate, J.P., Stepnicková, L.: Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations. Expert Syst. Appl. 40(6), 1981–1992 (2013)CrossRefGoogle Scholar
  18. 18.
    Tashman, L.: Out-of-sample tests of forecasting accuracy: an analysis and review. Int. Forecast. J. 16(4), 437–450 (2000)CrossRefGoogle Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I-511. IEEE (2001)Google Scholar
  20. 20.
    Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Franscico (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paulo Cortez
    • 1
    Email author
  • Luís Miguel Matos
    • 1
  • Pedro José Pereira
    • 1
  • Nuno Santos
    • 2
  • Duarte Duque
    • 3
  1. 1.Department of Information Systems, ALGORITMI CentreUniversity of MinhoGuimarãesPortugal
  2. 2.EXVA TechnologiesBragaPortugal
  3. 3.ALGORITMI CentreDIGARC - Polytechnic Institute of Cavado and AveBarcelosPortugal

Personalised recommendations