Skip to main content

Optical-Based Interference Cancellation in Wireless Sensor Networks

  • Chapter
  • First Online:
  • 1635 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 23))

Abstract

One of the biggest challenges facing the widespread implementation of wireless sensor networks is wireless interference and radio-frequency (RF) spectrum crowding. Even today, wireless networks are already straining under society’s relentless demand for higher data rates and constant connectivity. For wireless sensor networks to become a reality, research on increasing network capacity and allocating spectral resources must necessarily involve new techniques for handling wireless interference scalably and efficiently. This chapter focuses on analog interference cancellation using optical signal processing as a path towards operating in the presence of wireless interference. Canceling interference before it enters a receiver allows wireless sensor networks to conserve scarce spectral resources and relax system requirements, resulting in robust operation, increased battery life, and reduced size and cost. Through its unique physics, optics enables new RF functionalities that are extremely valuable to canceling interference in the RF front-end, chief among them being wide processing bandwidth. The wideband nature of optics is key to anticipating the rise in data rates, bandwidths, and channel counts of future networks, and endows optics with the potential to realize true multiband radio transceivers. Our goal in this chapter is to present an overview of optical-based RF interference cancellation and discuss the key characteristics that make optics an outstanding technology platform for the job. We then show several system architectures and a sample of their experimental performance. We leave the readers with a discussion on the future prospects for this technology, focusing specifically on photonic integrated circuits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 (2016)

    Google Scholar 

  2. Resonant Inc., Radically reducing the cost and size of cellphone RF filters to fuel the mobile revolution, Tech. Rep. (2015)

    Google Scholar 

  3. S. Choi, A. Cichocki, A. Beloucharni, Second order nonstationary source separation. J. VLSI signal Process. Syst. Signal, Image Video Technol. 32(1–2), 93–104

    Google Scholar 

  4. S. Lee, S. Choi, A. Cichocki, H.M. Park, Blind source separation and independent component analysis: a review, Jan 2005

    Google Scholar 

  5. G. Fabrizio, A. Farina, Blind source separation with the generalised estimation of multipath signals algorithm. IET Radar Sonar Navig. 8(9), 1255–1266 (2014)

    Article  Google Scholar 

  6. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman et al., Applications of self-interference cancellation in 5G and beyond. IEEE Commun. Mag. 52(2), 114–121 (2014)

    Article  Google Scholar 

  7. M.P. Chang, P.R. Prucnal, Full-duplex spectrum sensing in cognitive radios using optical self-interference cancellation, in 2015 9th International Conference on Sensors and Technology (IEEE, 2015), pp. 341–344

    Google Scholar 

  8. M. Jain, J.I. Choi, T. Kim, D. Bharadia, S. Seth et al., Practical, real-time, full duplex wireless, in Procedings of 17th Annual International Conference on Mobile Computing Networks— MobiCom ’11 (ACM Press, New York, New York, USA, 2011), p. 301

    Google Scholar 

  9. D. Bharadia, E. McMilin, S. Katti, Full duplex radios, in Proceedings of ACM SIGCOMM 2013 Conference—SIGCOMM ’13, vol. 43, no. 4 (ACM Press, 2013, New York, New York, USA), p. 375

    Google Scholar 

  10. R.C. Williamson, R.D. Esman, RF photonics. J. Light. Technol. 26(9), 1145–1153 (2008)

    Article  Google Scholar 

  11. J. Capmany, D. Novak, Microwave photonics combines two worlds, in National Photonics, vol. 1, no. 6, June 2007, pp. 319–330

    Google Scholar 

  12. E. Granot, R. Weber, S. Tzadok, G. Gertel, N. Narkiss, Fibers vs. coax for RF delay line applications, in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics System (IEEE, Nov 2009), pp. 1–2

    Google Scholar 

  13. D. Marpaung, High Dynamic Range Analog Photonic Links: Design and Implementation (2009)

    Google Scholar 

  14. J. Yao, Microwave photonics. J. Light. Technol. 27(3), 314–335 (2009)

    Article  Google Scholar 

  15. A.J. Seeds, K.J. Williams, Microwave photonics. Light. Technol. J. 24(12), 4628–4643 (2006)

    Article  Google Scholar 

  16. R.A. Minasian, Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006)

    Article  Google Scholar 

  17. C.H. Cox, Gain and noise figure in analogue fibre-optic links, pp. 238–242 (1992)

    Google Scholar 

  18. C.H. Cox, E. Ackerman, R. Helkey, G.E. Betts, Techniques and performance of intensity-modulated direct-detection of analog optical links. IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997)

    Article  Google Scholar 

  19. C. Cox, E. Ackerman, G. Betts, J. Prince, Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006)

    Article  Google Scholar 

  20. J. Capmany, B. Ortega, D. Pastor, A tutorial on microwave photonic filters. J. Light. Technol. 24(January), 201–230 (2006)

    Article  Google Scholar 

  21. R.A. Minasian, Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J. Quantum Electron. 52(1), 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  22. J. Chang, M.P. Fok, R.M. Corey, J. Meister, P.R. Prucnal, Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner. IEEE Microw. Wirel. Components Lett. 23(10), 563–565 (2013)

    Article  Google Scholar 

  23. J. Chang, J. Meister, P.R. Prucnal, Implementing a novel highly scalable adaptive photonic beamformer using “blind” guided accelerated random search. J. Light. Technol. 32(20), 3623–3629 (2014)

    Article  Google Scholar 

  24. S. Fathpour, Silicon-photonics-based wideband radar beamforming: basic design. Opt. Eng. 49(1), 018201 (2010)

    Article  Google Scholar 

  25. T.P. McKenna, J.A. Nanzer, T.R. Clark, Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission. IEEE Photonics Technol. Lett. 26(14), 1407–1410 (2014)

    Article  Google Scholar 

  26. J. Sancho, J. Lloret, I. Gasulla, S. Sales, J. Capmany, Fully tunable 360 microwave photonic phase shifter based on a single semiconductor optical amplifier. Opt. Express, 19(18), 17–421 (2011)

    Google Scholar 

  27. W. Xue, S. Sales, J. Capmany, J. Mørk, Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Opt. Express 18(6), 6156–6163 (2010)

    Article  Google Scholar 

  28. K.L. Deng, K.I. Kang, I. Glask, P. Prucnal, A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks. IEEE Photon. Technol. Lett. 9(11), 1496–1498 (1997)

    Article  Google Scholar 

  29. M.P. Chang, M. Fok, A. Hofmaier, P.R. Prucnal, Optical analog self-interference cancellation using electro-absorption modulators. IEEE Microw. Wirel. Compon. Lett. 23(2), 99–101 (2013)

    Article  Google Scholar 

  30. M.P. Chang, C.-L. Lee, B. Wu, P.R. Prucnal, Adaptive optical self-interference cancellation using a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 27(9), 1018–1021 (2015)

    Article  Google Scholar 

  31. J. Chang, P.R. Prucnal, A novel analog photonic method for broadband multipath interference cancellation. IEEE Microw. Wirel. Compon. Lett. 23(7), 377–379 (2013)

    Article  Google Scholar 

  32. C. Cox, Transmit isolating photonic receive links: a new capability for antenna remoting, in Optical Fiber Communication Conference on Fiber Optic Engineers 2011 (OSA, Washington, D.C., Mar 2011), p. OThA1

    Google Scholar 

  33. C. Cox, E. Ackerman, Demonstration of a single-aperture, full-duplex communication system, in 2013 IEEE Radio Wireless Symposium (IEEE, Jan 2013), pp. 148–150

    Google Scholar 

  34. R. Alferness, Waveguide electrooptic modulators. IEEE Trans. Microw. Theory Tech. 30(8), 1121–1137 (1982)

    Article  Google Scholar 

  35. J.-W. Shi, C.-B. Huang, C.-L. Pan, Millimeter-wave photonic wireless links for very high data rate communication. NPG Asia Mater. 3(4), 41–48 (2011)

    Article  Google Scholar 

  36. M. Fice, E. Rouvalis, F. Van Dijk, A. Accard, F. Lelarge et al., 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. Opt. Express 20(2), 1769–1774 (2012)

    Article  Google Scholar 

  37. A. Hirata, H. Ishii, T. Nagatsuma, Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters. IEEE Trans. Microw. Theory Tech. 49(11), 2157–2162 (2001)

    Article  Google Scholar 

  38. M.P. Chang, N. Wang, B. Wu, P.R. Prucnal, A simultaneous variable optical weight and delay in a semiconductor optical amplifier for microwave photonics. J. Light. Technol. 33(10), 2120–2126 (2015)

    Article  Google Scholar 

  39. P.A. Morton, J. Cardenas, J.B. Khurgin, M. Lipson, Fast thermal switching of wideband optical delay line with no long-term transient. IEEE Photonics Technol. Lett. 24(6), 512–514 (2012)

    Article  Google Scholar 

  40. F. Xia, L. Sekaric, Y. Vlasov, Resonantly enhanced all optical buffers on a silicon chip, in 2007 Photonics Switch. PS (2007), pp. 7–8

    Google Scholar 

  41. J.K.S. Poon, L. Zhu, G.A. DeRose, A. Yariv, Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31(4), 456–458 (2006)

    Google Scholar 

  42. B. Jalali, S. Fathpour, Silicon Photonics. J. Light. Technol. 24(12), 4600–4615 (2006)

    Article  Google Scholar 

  43. R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)

    Article  Google Scholar 

  44. G. Bodeep, T. Darcie, Semiconductor lasers versus external modulators: a comparison of nonlinear distortion for lightwave subcarrier CATV applications. IEEE Photonics Technol. Lett. 1(11), 401–403 (1989)

    Article  Google Scholar 

  45. K.Y. Lau, A. Yariv, Intermodulation distortion in a directly modulated semiconductor injection laser. Appl. Phys. Lett. 45(10), 1034 (1984)

    Article  Google Scholar 

  46. R. Childs, V. O’Byrne, Multichannel AM video transmission using a high-power Nd:YAG laser and linearized external modulator. IEEE J. Sel. Areas Commun. 8(7), 1369–1376 (1990)

    Article  Google Scholar 

  47. L.M. Johnson, H.V. Roussell, Reduction of intermodulation distortion in interferometric optical modulators. Opt. Lett. 13(10), 928 (1988)

    Article  Google Scholar 

  48. S. Korotky, R. de Ridder, Dual parallel modulation schemes for low-distortion analog optical transmission. IEEE J. Sel. Areas Commun. 8(7), 1377–1381 (1990)

    Article  Google Scholar 

  49. J. Capmany, I. Gasulla, S. Sales, Microwave photonics: Harnessing slow light. Nat. Photonics 5(12), 731–733 (2011)

    Article  Google Scholar 

  50. J.B. Khurgin, Slow light in various media: a tutorial. Adv. Opt. Photonics 2(3), 287 (2010)

    Article  Google Scholar 

  51. J. Sun, M. Chang, R.P. Paul, Scalable optical self-interference cancellation system for over-the-air multipath interference, IEEE Photonics J. (2016)

    Google Scholar 

  52. M.P. Fok, Y. Deng, K. Kravtsov, P.R. Prucnal, Signal beating elimination using single-mode fiber to multimode fiber coupling. Opt. Lett. 36(23), 4578–4580 (2011)

    Article  Google Scholar 

  53. F.A. Kish, D. Welch, R. Nagarajan, J.L. Pleumeekers, V. Lal et al., Current status of large-scale InP photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 17(6), 1470–1489 (2011)

    Article  Google Scholar 

  54. M. Smit, J.V.D. Tol, M. Hill, Moore’s law in photonics, vol. 13, no. 1 (2012), pp. 1–13

    Google Scholar 

  55. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Integrated microwave photonics. Laser Photonics Rev. 7(4), 506–538 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Prucnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chang, M.P., (Jenny) Sun, J., Lu, M., Blow, E., Prucnal, P.R. (2017). Optical-Based Interference Cancellation in Wireless Sensor Networks. In: Mukhopadhyay, S., Postolache, O., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-47322-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47322-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47321-5

  • Online ISBN: 978-3-319-47322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics