Skip to main content

Wireless Sensing Systems for Body Area Networks

  • Chapter
  • First Online:
Sensors for Everyday Life

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 22))

Abstract

Body area networks (BANs) are a form of small-scale wireless sensor networks (WSNs) deployed on the human body. This technology embodies the convergence of wearable, sensing, and wireless communication techniques, with a focus mainly on health monitoring, human-machine interaction, and motion capturing applications. As the bridge between on-body circuits and their external application users, body-worn radio frequency (RF) structures operating at high frequencies have gained increasing attention in recent years, in particular RF structures fabricated with flexible or textile materials. Due to the flexibility of these RF structures to conform to human body for comfortable fit, they are well-suited for BAN applications. In addition, if the characteristics of these RF structures can naturally or technically be made to react to bodily phenomena such as temperature and humidity, the same structures (such as antennae) can also function as sensors. These RF structures with sensing capability could be referred to as wireless sensing structures. Besides, there also exist several techniques for the detection and the interpretation of the output signals of these sensing structures. For a system consisting of a wireless sensing structure and a data detection and interpretation circuit or device, we refer to it as a wireless sensing system. This chapter reviews the sensing mechanisms, data detection and interpretation methods and typical BAN applications of existing wireless sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, V.C. Leung, Body area networks: a survey. Mob. Netw. Appl. 16(2), 171–193 (2011)

    Article  Google Scholar 

  2. M.U. Talha, J. Ahmad, Body area networks (BANS)–an overview with smart sensors based telemedical monitoring system. Int. J. Comput. Appl. 84(8), 20–23 (2013)

    Google Scholar 

  3. A.J. Martin, Sensors and computing systems in smart clothing, in Smart Clothes and Wearable Technology, ed. by J. McCann, D. Bryson (Elsevier, Ch, 2009), p. 9

    Google Scholar 

  4. M.A. Hanson, H.C. Powell Jr., A.T. Barth, K. Ringgenberg, B.H. Calhoun, J.H. Aylor, J. Lach, Body area sensor networks: challenges and opportunities. Computer 1, 58–65 (2009)

    Article  Google Scholar 

  5. H. Huang, Flexible wireless antenna sensor: a review. IEEE Sens. J. 13(10), 3865–3872 (2013)

    Article  Google Scholar 

  6. J. McCann, D. Bryson (eds.), Smart Clothes and Wearable Technology (Elsevier, 2009) (Chapter 9)

    Google Scholar 

  7. X. Lin, B.C. Seet, F. Joseph, Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems, in 2015 9th International Conference on Sensing Technology (ICST) (pp. 591–595). IEEE, 2015, Dec

    Google Scholar 

  8. Y. Huang, W. Dong, T. Huang, Y. Wang, L. Xiao, Y. Su, Z. Yin, Self-similar design for stretchable wireless LC strain sensors. Sens. Actuators A 224, 36–42 (2015)

    Article  Google Scholar 

  9. Z. Wang, L.Z. Lee, D. Psychoudakis, J.L. Volakis, Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications. Antennas Propag. IEEE Trans. 62(6), 3321–3329 (2014)

    Article  Google Scholar 

  10. V.K. Varadan, P.T. Teo, K.A. Jose, V.V. Varadan, Design and development of a smart wireless system for passive temperature sensors. Smart Mater. Struct. 9(4), 379 (2000)

    Article  Google Scholar 

  11. W. Buff, S. Klett, M. Rusko, J. Ehrenpfordt, M. Goroli, Passive remote sensing for temperature and pressure using SAW resonator devices. Ultrason. Ferroelectr. Freq. Control IEEE Trans. 45(5), 1388–1392 (1998)

    Article  Google Scholar 

  12. J.R. Humphries, D.C. Malocha, Wireless SAW strain sensor using orthogonal frequency coding. Sens. J IEEE 15(10), 5527–5534 (2015)

    Article  Google Scholar 

  13. X. Ren, X. Gong, A wireless sensing technique using passive microwave resonators, in Antennas and Propagation Society International Symposium, 2008. AP-S 2008. IEEE (pp. 1–4). IEEE (2008, July)

    Google Scholar 

  14. R. Warty, M.R. Tofighi, U. Kawoos, A. Rosen, Characterization of implantable antennas for intracranial pressure monitoring: reflection by and transmission through a scalp phantom. Microwave Theory Tech. IEEE Trans. 56(10), 2366–2376 (2008)

    Article  Google Scholar 

  15. R. Salvado, C. Loss, R. Gonçalves, P. Pinho, Textile materials for the design of wearable antennas: a survey. Sensors 12(11), 15841–15857 (2012)

    Article  Google Scholar 

  16. Y. Ouyang, W.J. Chappell, High frequency properties of electro-textiles for wearable antenna applications. Antennas Propag. IEEE Trans. 56(2), 381–389 (2008)

    Article  Google Scholar 

  17. X. Huang, Y. Liu, K. Chen, W.J. Shin, C.J. Lu, G.W. Kong, et al., Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10(15), 3083–3090 (2014)

    Google Scholar 

  18. H.A. Toprakci, T.K. Ghosh, Textile sensors, in Handbook of Smart Textiles (2015), pp. 357–379

    Google Scholar 

  19. J. Virtanen, L. Ukkonen, T. Björninen, A.Z. Elsherbeni, L. Sydanheimo, Inkjet-printed humidity sensor for passive UHF RFID systems. Instrum. Meas. IEEE Trans. 60(8), 2768–2777 (2011)

    Article  Google Scholar 

  20. K.G. Ong, Design and Application of Planar Inductor–Capacitor Resonant-Circuit Remote Query Sensor, Dissertation, University of Kentucky, 2000

    Google Scholar 

  21. J. Fernandez-Salmeron, A. Rivadeneyra, M.A. Carvajal Rodriguez, L.F. Capitan-Vallvey, A.J. Palma, HF RFID tag as humidity sensor: two different approaches. Sens. J. IEEE 15(10), 5726–5733 (2015)

    Article  Google Scholar 

  22. K.J. Loh, J.P. Lynch, N.A. Kotov, Inductively coupled nanocomposite wireless strain and pH sensors. Smart Struct. Syst. 4(5), 531–548 (2008)

    Article  Google Scholar 

  23. D.M. Pozar, Microwave Engineering (John Wiley & Sons, 2009) (Chapter 6)

    Google Scholar 

  24. L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi, et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5 (2014)

    Google Scholar 

  25. F. Molina-Lopez, D. Briand, N.F. De Rooij, All additive inkjet printed humidity sensors on plastic substrate. Sens. Actuators B Chem. 166, 212–222 (2012)

    Article  Google Scholar 

  26. A. Daliri, A. Galehdar, S. John, C.H. Wang, W.S. Rowe, K. Ghorbani, Wireless strain measurement using circular microstrip patch antennas. Sens. Actuators A 184, 86–92 (2012)

    Article  Google Scholar 

  27. Fabric Antenna Sensors, Sylvia Herbert, Sep 2016. Available at http://sylviaherbert.com/fabric-antenna-sensors-1/

  28. J.W. Hearle, W.E. Morton, Physical Properties of Textile Fibres (Elsevier, 2008) (Chapter 21)

    Google Scholar 

  29. S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, G. Marrocco, RFID technology for IoT-based personal healthcare in smart spaces. Internet Things J. IEEE 1(2), 144–152 (2014)

    Article  Google Scholar 

  30. L. Rosengren, P. Rangsten, Y. Bäcklund, B. Hök, B. Svedbergh, G. Selén, A system for passive implantable pressure sensors. Sens. Actuators A 43(1), 55–58 (1994)

    Article  Google Scholar 

  31. G.D. Alley, Interdigital capacitors and their application to lumped-element microwave integrated circuits. Microwave Theory Tech. IEEE Trans. 18(12), 1028–1033 (1970)

    Article  Google Scholar 

  32. K.G. Ong, C.A. Grimes, C.L. Robbins, R.S. Singh, Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sens. Actuators A 93(1), 33–43 (2001)

    Article  Google Scholar 

  33. W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 24(22), 3299–3304 (2014)

    Article  Google Scholar 

  34. J. Yoo, L. Yan, S. Lee, Y. Kim, H.J. Yoo, A 5.2 mw self-configured wearable body sensor network controller and a 12 w wirelessly powered sensor for a continuous health monitoring system. Solid-State Circ. IEEE J. 45(1), 178–188 (2010)

    Google Scholar 

  35. D. Zhang, F. Xia, Z. Yang, L. Yao, W. Zhao, Localization technologies for indoor human tracking, in 2010 5th International Conference on Future Information Technology (FutureTech) (pp. 1–6). IEEE (2010, May)

    Google Scholar 

  36. R. Bharadwaj, A. Alomainy, C. Parini, Numerical investigation of body-worn ultra wideband antenna localisation techniques for motion capture applications, in Session 3A7b SC4: Body-centric Wireless Communications, vol. 989 (2013)

    Google Scholar 

  37. R. Bharadwaj, C. Parini, A. Alomainy, Experimental investigation of 3-D human body localization using wearable ultra-wideband antennas. Antennas Propag. IEEE Trans. 63(11), 5035–5044 (2015)

    Article  MathSciNet  Google Scholar 

  38. R. Bharadwaj, A. Alomainy, C. Parini, Study of Ultra wideband localisation techniques using various monitoring configurations, in 2012 6th European Conference on Antennas and Propagation (EUCAP) (pp. 2035–2038). IEEE (2012, March)

    Google Scholar 

  39. C. Occhiuzzi, S. Caizzone, G. Marrocco, Passive UHF RFID antennas for sensing applications: Principles, methods, and classifications. Antennas Propag. Mag. IEEE 55(6), 14–34 (2013)

    Article  Google Scholar 

  40. P.J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.C. Tai, Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Microelectromech. Syst. J. 19(4), 721–734 (2010)

    Article  Google Scholar 

  41. K.G. Ong, J.S. Bitler, C.A. Grimes, L.G. Puckett, L.G. Bachas, Remote query resonant-circuit sensors for monitoring of bacteria growth: application to food quality control. Sensors 2(6), 219–232 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyou Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lin, X., Seet, BC., Joseph, F. (2017). Wireless Sensing Systems for Body Area Networks. In: Postolache, O., Mukhopadhyay, S., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-47319-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47319-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47318-5

  • Online ISBN: 978-3-319-47319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics