Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians

  • Eckart AltenmüllerEmail author
  • Shinichi Furuya
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 957)


Early and extensive musical training provides plastic adaptations of the nervous system and enhanced sensory, motor, and cognitive functions. Over decades, neuronal mechanism underlying the plastic adaptation through musical training has been investigated using neuroimaging and transcranial stimulation techniques. Recently, plastic changes in neuroplastic functions through musical training have gradually gained some interest, so-called metaplasticity. Metaplasticity enables faster and more stable skill acquisition for individuals with a history of prior musical training. This mechanism may also serve for prevention of developing maladaptive changes in the nervous system, being pathophysiology of focal dystonia in musicians. The present chapter introduces neurophysiological mechanisms and functional significances of brain plasticity and metaplasticity of the sensory and motor systems of musicians.


Neuroimaging MRI_imaging Voxel-based morphometry (VBM) Diffusion tensor imaging (DTI) Magnetoencephalography (MEG) Diffusion tensor imaging (DTI) Dystonia Piano Dexterity 


  1. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130CrossRefPubMedGoogle Scholar
  2. Altenmüller E (2003) Focal dystonia: advances in brain imaging and understanding of fine motor control in musicians. Hand Clin 19:523–538, xiGoogle Scholar
  3. Altenmüller E, Ioannou CI, Lee A (2015) Apollo’s curse: neurological causes of motor impairments in musicians. Prog Brain Res 217:89–106. doi: 10.1016/bs.pbr.2014.11.022 CrossRefPubMedGoogle Scholar
  4. Altenmüller E, Kopiez R, Grewe O (2013) A contribution to the evolutionary basis of music: lessons from the chill. The evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man, p 313Google Scholar
  5. Altenmüller E, Schlaug G (2015) Apollo’s gift: new aspects of neurologic music therapy. Prog Brain Res 217:237–252. doi: 10.1016/bs.pbr.2014.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amunts K, Schlaug G, Jancke L, Steinmetz H, Schleicher A, Dabringhaus A, Zilles K (1997) Motor cortex and hand motor skills: structural compliance in the human brain. Hum Brain Mapp 5:206–215. doi: 10.1002/(SICI)1097-0193(1997)5:3<206:AID-HBM5>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  7. Bailey JA, Zatorre RJ, Penhune VB (2014) Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. J Cogn Neurosci 26:755–767. doi: 10.1162/jocn_a_00527 CrossRefPubMedGoogle Scholar
  8. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148–1150. doi: 10.1038/nn1516 CrossRefPubMedGoogle Scholar
  9. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedGoogle Scholar
  10. Candia V, Wienbruch C, Elbert T, Rockstroh B, Ray W (2003) Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Proc Natl Acad Sci USA 100:7942–7946. doi: 10.1073/pnas.1231193100 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elbert T, Candia V, Altenmüller E et al (1998) Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport 9:3571–3575CrossRefPubMedGoogle Scholar
  12. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307CrossRefPubMedGoogle Scholar
  13. Ericsson KA, Krampe RT, Heizmann S (1993) Can we create gifted people? Ciba Found Symp 178: 222–231 (discussion 232–249)Google Scholar
  14. Furuya S, Altenmüller E (2015) Acquisition and reacquisition of motor coordination in musicians. Ann NY Acad Sci 1337:118–124. doi: 10.1111/nyas.12659 CrossRefPubMedGoogle Scholar
  15. Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmüller E (2014) Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci 34:13834–13839. doi: 10.1523/JNEUROSCI.1170-14.2014 CrossRefPubMedGoogle Scholar
  16. Furuya S, Nitsche MA, Paulus W, Altenmüller E (2013) Early optimization in finger dexterity of skilled pianists: implication of transcranial stimulation. BMC Neurosci 14:35. doi: 10.1186/1471-2202-14-35 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Furuya S, Oku T, Miyazaki F, Kinoshita H (2015) Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians. Sci Rep 5:15750. doi: 10.1038/srep15750 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23:9240–9245PubMedGoogle Scholar
  19. Granert O, Peller M, Jabusch HC, Altenmüller E, Siebner HR (2011) Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psychiatry 82:1225–1231. doi: 10.1136/jnnp.2011.245811 CrossRefPubMedGoogle Scholar
  20. Hallam S, Cross I, Thaut M (2016) The Oxford handbook of music psychology. Oxford University Press, OxfordGoogle Scholar
  21. Hamada M, Hanajima R, Terao Y et al (2009) Primary motor cortical metaplasticity induced by priming over the supplementary motor area. J Physiol 587:4845–4862. doi: 10.1113/jphysiol.2009.179101 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Herholz SC, Boh B, Pantev C (2011) Musical training modulates encoding of higher-order regularities in the auditory cortex. Eur J Neurosci 34:524–529. doi: 10.1111/j.1460-9568.2011.07775.x CrossRefPubMedGoogle Scholar
  23. Herholz SC, Zatorre RJ (2012) Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron 76:486–502. doi: 10.1016/j.neuron.2012.10.011 CrossRefPubMedGoogle Scholar
  24. Hund-Georgiadis M, von Cramon DY (1999) Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp Brain Res 125:417–425CrossRefPubMedGoogle Scholar
  25. James CE, Oechslin MS, Van De Ville D, Hauert CA, Descloux C, Lazeyras F (2014) Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct 219:353–366. doi: 10.1007/s00429-013-0504-z CrossRefPubMedGoogle Scholar
  26. Krampe RT, Ericsson KA (1996) Maintaining excellence: deliberate practice and elite performance in young and older pianists. J Exp Psychol Gen 125:331–359CrossRefPubMedGoogle Scholar
  27. Meinz EJ (2000) Experience-based attenuation of age-related differences in music cognition tasks. Psychol Aging 15:297–312CrossRefPubMedGoogle Scholar
  28. Mosing MA, Madison G, Pedersen NL, Kuja-Halkola R, Ullen F (2014) Practice does not make perfect: no causal effect of music practice on music ability. Psychol Sci 25:1795–1803. doi: 10.1177/0956797614541990 CrossRefPubMedGoogle Scholar
  29. Münte TF, Altenmüller E, Jancke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3:473–478. doi: 10.1038/nrn843 PubMedGoogle Scholar
  30. Muller-Dahlhaus F, Ziemann U (2015) Metaplasticity in human cortex. Neuroscientist 21:185–202. doi: 10.1177/1073858414526645 CrossRefPubMedGoogle Scholar
  31. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901CrossRefPubMedGoogle Scholar
  33. Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392:811–814. doi: 10.1038/33918 CrossRefPubMedGoogle Scholar
  34. Paquette C, Sidel M, Radinska BA, Soucy JP, Thiel A (2011) Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement. J Cereb Blood Flow Metab 31:2086–2095. doi: 10.1038/jcbfm.2011.72 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Prinz W (1984) Modes of linkage between perception and action. In: Cognition and motor processes. Springer, Berlin, pp 185–193Google Scholar
  36. Quartarone A, Rizzo V, Bagnato S et al (2005) Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 128:1943–1950. doi: 10.1093/brain/awh527 CrossRefPubMedGoogle Scholar
  37. Ragert P, Schmidt A, Altenmüller E, Dinse HR (2004) Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci 19:473–478CrossRefPubMedGoogle Scholar
  38. Schlaug G, Jancke L, Huang Y, Staiger JF, Steinmetz H (1995) Increased corpus callosum size in musicians. Neuropsychologia 33:1047–1055CrossRefPubMedGoogle Scholar
  39. Schmidt A, Jabusch HC, Altenmüller E, Kasten M, Klein C (2013) Challenges of making music: what causes musician’s dystonia? JAMA Neurol 70:1456–1459. doi: 10.1001/jamaneurol.2013.3931 CrossRefPubMedGoogle Scholar
  40. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385. doi: 10.1523/JNEUROSCI.5316-03.2004 CrossRefPubMedGoogle Scholar
  41. Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33:1282–1290. doi: 10.1523/JNEUROSCI.3578-12.2013 CrossRefPubMedGoogle Scholar
  42. Tierney AT, Krizman J, Kraus N (2015) Music training alters the course of adolescent auditory development. Proc Natl Acad Sci USA 112:10062–10067. doi: 10.1073/pnas.1505114112 CrossRefPubMedPubMedCentralGoogle Scholar
  43. van der Steen MC, Molendijk EB, Altenmüller E, Furuya S (2014) Expert pianists do not listen: the expertise-dependent influence of temporal perturbation on the production of sequential movements. Neuroscience 269:290–298. doi: 10.1016/j.neuroscience.2014.03.058 CrossRefPubMedGoogle Scholar
  44. Vaquero L, Hartmann K, Ripolles P et al (2016) Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage 126:106–119. doi: 10.1016/j.neuroimage.2015.11.008 CrossRefPubMedGoogle Scholar
  45. Wan CY, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 16:566–577. doi: 10.1177/1073858410377805 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Waters-Metenier S, Husain M, Wiestler T, Diedrichsen J (2014) Bihemispheric transcranial direct current stimulation enhances effector-independent representations of motor synergy and sequence learning. J Neurosci 34:1037–1050. doi: 10.1523/JNEUROSCI.2282-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wilson P (1997) The singing voice: an owner’s manual: for singers, actors, dancers and musicians. MIT Press, CambridgeGoogle Scholar
  48. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8:547–558. doi: 10.1038/nrn2152 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute for Music Physiology and Musicians’ Medicine (IMMM)Hannover University of Music, Drama and MediaHannoverGermany
  2. 2.Department of Information and Communication Sciences, Musical Skill and Injury Center (MuSIC)Sophia UniversityTokyoJapan

Personalised recommendations