Skip to main content

Empowering Mixed-Criticality System Engineers in the Dark Silicon Era: Towards Power and Temperature Analysis of Heterogeneous MPSoCs at System Level

  • Chapter
  • First Online:
Model-Implementation Fidelity in Cyber Physical System Design

Abstract

With the predicted device, core, and multi-core scaling, a recent study revealed that regardless of chip organization and topology, multi-core scaling is power limited. It has been predicted that at 22 nm, 21 % of a fixed-size chip must be powered off, and at 8 nm, even more than 50 % (Esmaeilzadeh et al., News 39(3):365–376, 2011). Especially for mixed-criticality systems, which consist of a mixture of safety and non-safety relevant applications, this is of major concern. Safety-critical applications cannot be simply switched on and off or migrated during run-time. A system engineer should be aware of any possible cross-application interferences with respect to timing, power, and thermal properties as soon as possible in the design process. Introduction of power and temperature management must be planned and realized without violating freedom from interference. For this reason, the extra-functional properties need to be modeled and analyzed at the system level, because they can strongly affect the overall quality of service (performance, battery lifetime) or even cause the system to fail meeting its real-time and safety requirements.In this chapter, we present our vision of a SystemC-based simulation framework for capturing extra-functional properties in virtual platforms, currently under development in the CONTREX project. This covers the specification of platform properties (extra-functional model) as well as the dynamic capturing, processing, and extraction of power/temperature information during the simulation. Especially closing the loop back to the application and run-time services is an important feature for complex heterogeneous hardware platforms and software stacks. As an example, we will present a battery-powered mixed-critical avionics system, running a safety-critical flight control application and a performance critical image processing application on the same multi-core System on Chip.

With the support of many others, see Acknowledgments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Running on the host computer.

  2. 2.

    While the MicroBlaze timing model is close to clock cycle accuracy, the ARM timing model is working on a coarse-grained instructions per cycle level.

References

  1. J. Bellersen, M. Bornhold, M. Braun, H. Elbers, T. Nordlohne, N. May-Johann, J. Röbesaat, A. Schaadt, P. Schmale, S. Schmidt, S.V. Maelen, M. Wieghaus, Dokumentation Avionic Architecture. Tech. rep., Carl von Ossietzky Universität Oldenburg, Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften, Department für Informatik (2015)

    Google Scholar 

  2. A. Burns, R.I. Davis, Mixed Criticality Systems - A Review. http://www-users.cs.york.ac.uk/burns/review.pdf (2015)

  3. FP7 EU project CONTREX (Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties). http://contrex.offis.de

  4. Docea Power: Aceplorer (2016), http://www.doceapower.com/index.php?option=com_content&view=article&id=1&Itemid=102

    Google Scholar 

  5. Docea Power: Thermal Profiler (2016), http://www.doceapower.com/index.php?option=com_content&view=article&id=237&Itemid=145

    Google Scholar 

  6. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling. SIGARCH Comput. Archit. News 39 (3), 365–376 (2011). http://doi.acm.org/10.1145/2024723.2000108

    Article  Google Scholar 

  7. K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, S. Sinha, Virtual execution platforms for mixed-time-criticality systems: The compsoc architecture and design flow. SIGBED Rev. 10 (3), 23–34 (2013). http://doi.acm.org/10.1145/2544350.2544353

    Article  Google Scholar 

  8. K. Grüttner, P. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stattelmann, B. Sander, O. Bringmann, W. Nebel, W. Rosenstiel, An esl timing amp; power estimation and simulation framework for heterogeneous socs. In 2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pp. 181–190 (July 2014)

    Google Scholar 

  9. P.A. Hartmann, K. Grüttner, W. Nebel, Advanced systemc tracing and analysis framework for extra-functional properties. In Applied Reconfigurable Computing - 11th International Symposium, ARC 2015, ed. by K. Sano, D. Soudris, M. Hübner, P.C. Diniz, Bochum, Germany, April 13-17, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9040 (Springer, New York, 2015), pp. 141–152. http://dx.doi.org/10.1007/978-3-319-16214-0_12

    Google Scholar 

  10. D. Helms, K. Grüttner, R. Eilers, M. Metzdorf, K. Hylla, F. Poppen, W. Nebel, Considering variation and aging in a full chip design methodology at system level. In: Proceedings of the 2014 Electronic System Level Synthesis Conference (ESLsyn), pp. 1–6 (May 2014)

    Google Scholar 

  11. HiSystems GmbH Germany. https://www.mikrocontroller.com/ (07 2015)

  12. Imperas Software Limited: M*SDK - Advanced Multicore Software Development Kit (2016), http://www.imperas.com/msdk-advanced-multicore-software-development-kit

  13. Imperas Software Limited: Open Virtual PlatformsTM(OVPTM) (2016), http://www.ovpworld.org

  14. N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, V. Narayanan, Leakage current: Moore’s law meets static power. Computer 36 (12), 68–75 (2003). http://dx.doi.org/10.1109/MC.2003.1250885

    Article  Google Scholar 

  15. S. Kumar Rethinagiri, O. Palomar, J. Arias Moreno, O. Unsal, A. Cristal, Vppet: Virtual platform power and energy estimation tool for heterogeneous mpsoc based fpga platforms. In: 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), 2014, pp. 1–8 (Sept 2014)

    Google Scholar 

  16. A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, R. Schnekenburger, H. Dubois, F. Terrier, Papyrus uml: an open source toolset for mda. In Proceedings ECMDA-FA ’09: Model Driven Architecture - Foundations and Applications: 5th European Conference, ECMDA-FA 2009, Enschede, The Netherlands, June 23–26, 2009, ed. by R.F. Paige, A. Hartman, A. Rensink. Lecture Notes in Computer Science, vol. 5562, pp. 1–4 (Springer, New York, 2009)

    Google Scholar 

  17. D. Lorenz, K. Grüttner, N. Bombieri, V. Guarnieri, S. Bocchio, From RTL IP to functional system-level models with extra-functional properties. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis. CODES+ISSS ’12 (ACM, New York, NY, USA, 2012), pp. 547–556. http://doi.acm.org/10.1145/2380445.2380529

  18. D. Lorenz, K. Grüttner, W. Nebel, Data- and state-dependent power characterisation and simulation of black-box RTL IP components at system level. In: 17th Euromicro Conference on Digital Systems Design (DSD 2014) (2014)

    Google Scholar 

  19. D. Lorenz, K. Grüttner, V. Ortland, Trace-based power state machine modelling. In: Proceedings of the Forum on Specification and Design Languages (FDL’2014) (2014)

    Google Scholar 

  20. D. Lorenz, P.A. Hartmann, K. Grüttner, W. Nebel, Non-invasive power simulation at system-level with SystemC. In: Power and Timing Modeling, Optimization and Simulation - 22nd International Workshop (PATMOS’2012). Lecture Notes in Computer Science (Springer, New York, 2012), pp. 21–31

    Google Scholar 

  21. W. Nebel, D. Helms, K. Grüttner, F. Oppenheimer, Closing the gap between technology and application needs (5 2013), edaWorkshop Panel

    Google Scholar 

  22. G. Nitsche, K. Grüttner, W. Nebel, Power contracts: A formal way towards power–closure?! In: Proc. of the 23rd Intl. Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 59–66 (September 2013)

    Google Scholar 

  23. G. Nitsche, K. Grüttner, W. Nebel, Towards satisfaction checking of Power Contracts in Uppaal. In Proceedings of the 2014 Forum on Specification and Design Languages (FDL), ed. by Chips, E.E.E., design Initiative, S. ECSI - European Electronic Chips and Systems design Initiative, München (Oct 2014)

    Google Scholar 

  24. Object Management Group (OMG): UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems (2011)

    Google Scholar 

  25. Object Management Group (OMG): OMG Systems Modeling Language (OMG SysML), Version 1.3 (2012), http://www.omg.org/spec/SysML/1.3/

  26. Project Group Avionic Architecture (PGAA). https://www.uni-oldenburg.de/avionic-architecture/ (2015)

  27. F. Rosa, L. Ost, R. Reis, G. Sassatelli, Instruction-driven timing cpu model for efficient embedded software development using ovp. In: 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), pp. 855–858 (Dec 2013)

    Google Scholar 

  28. S. Rosinger, M. Metzdorf, D. Helms, W. Nebel, Behavioral-level thermal- and aging-estimation flow. In: Test Workshop (LATW), 2011 12th Latin American, pp. 1–6 (March 2011)

    Google Scholar 

  29. H. Schlender, S. Schreiner, M. Metzdorf, K. Grüttner, W. Nebel, Teaching mixed-criticality: Multi-rotor flight control and payload processing on a single chip. In: Proceedings of the 2015 Workshop on Embedded and Cyber-Physical Systems Education (WESE) (10 2015)

    Google Scholar 

  30. S. Schreiner, K. Grüttner, S. Rosinger, A. Rettberg, Autonomous flight control meets custom payload processing: A mixed-critical avionics architecture approach for civilian uavs. In Proceedings of the 2014 IEEE 17th International Symposium on Object/Component-Oriented Real-Time Distributed Computing, ISORC ’14 (IEEE Computer Society, Washington, DC, USA, 2014), pp. 348–357. http://dx.doi.org/10.1109/ISORC.2014.28

  31. Trenz Electronic GmbH: TE0720 Series (Z-7020), http://www.trenz-electronic.de/de/produkte/fpga-boards/trenz-electronic-te0720-zynq.html

  32. S. Trujillo, R. Obermaisser, K. Grüttner, F.J. Cazorla, J. Perez, European Project Cluster on Mixed-Criticality Systems. In 3PMCES Workshop (Performance, Power and Predictability of Many-Core Embedded Systems) at DATE’14. Electronic Chips & Systems Design Initiative (ECSI) (2014)

    Google Scholar 

  33. Xilinx Inc.: ZynqTM-7000 SoC Extensible Virtual Platform, http://www.xilinx.com/products/zynq-7000/extensible-virtual-platform.htm

  34. Xilinx Inc.: Xilinx Power Estimator (XPE) (2016), http://www.xilinx.com/products/design_tools/logic_design/xpe.htm

    Google Scholar 

  35. Xilinx Inc. Zynq-7000 All Programmable SoC, http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html (07 2015)

Download references

Acknowledgements

Many thanks to the CONTREX team members Ralph Görgen, Sven Rosinger, Sören Schreiner, Marco Feltes, and Martin Bornhold, my colleagues Henning Schlender and Malte Metzdorf, and the master students Jörn Bellersen, Martin Bornhold, Marco Braun, Henning Elbers, Thomas Nordlohne, Niklas May-Johann, Jenny Röbesaat, André Schaadt, Patrick Schmale, Steven Schmidt, Sebastian Vander Maelen, and Markus Wieghaus for their great work and enthusiasm on the multi-rotor use-case.

This work has been partially supported by the EU integrated project CONTREX (FP7-611146) and the ARTEMIS project EMC2 (01-IS14002R) partially funded by the EC and the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Grüttner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grüttner, K. (2017). Empowering Mixed-Criticality System Engineers in the Dark Silicon Era: Towards Power and Temperature Analysis of Heterogeneous MPSoCs at System Level. In: Molnos, A., Fabre, C. (eds) Model-Implementation Fidelity in Cyber Physical System Design. Springer, Cham. https://doi.org/10.1007/978-3-319-47307-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47307-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47306-2

  • Online ISBN: 978-3-319-47307-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics