Skip to main content

Source Width in Music Production. Methods in Stereo, Ambisonics, and Wave Field Synthesis

  • Chapter
  • First Online:
Studies in Musical Acoustics and Psychoacoustics

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 4))


Source width of musical instruments, measured in degrees, is a matter of source extent and the distance of the observer. In contrast to that, perceived source width is a matter of psychological organization of sound. It is influenced by the sound radiation characteristics of the source and by the room acoustics and restricted by masking and by localization accuracy. In this chapter perceived source width in psychoacoustics and apparent source width in room acoustical research are revisited. Source width in music recording and production practice in stereo and surround as well as in ambisonics and wave field synthesis are addressed. After the review of the literature an investigation is introduced. The radiation characteristics of 10 musical instruments are measured at 128 angles and the radiated sound is propagated to potential listening positions at 3 different distances. Here, monaural and binaural sound quantities are calculated. By means of multiple linear regression, the physical source extent is predicted by sound field quantities. The combination of weighted interaural phase differences in the sensitive frequency region together with the number of partials in the quasi-stationary part of instrumental sounds shows significant correlation with the actual source extent of musical instruments. The results indicate that these parameters might have a relevant effect on perceived source extent as well. Consequently, acoustic control over these parameters will increase psychoacoustic control concerning perceived source extent in audio systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    Cf. Blauert [6], pp. 37f and Zwicker and Fastl [56], p. 309.

  2. 2.

    See e.g. Haas [21], Blauert and Cobben [8].

  3. 3.

    The complete investigation is documented in Hirvonen and Pulkki [24]. Contrary to width, they succeeded to replicate perceived source center by different adaptations of Raatgever’s frequency weighting function.

  4. 4.

    Blauert [6], p. 51.

  5. 5.

    See e.g. Gade [18], p. 304.

  6. 6.

    See e.g. Blau [5], p. 720.

  7. 7.

    See e.g. Yanagawa and Tohyama [47] and Yanagawa et al. [48].

  8. 8.

    See e.g. Deutsches Institut f¨ur Normung [15], pp. 20f and Beranek [4], pp. 519 and 161.

  9. 9.

    According to Gade [18], p. 309.

  10. 10.

    Cf. Beranek [4], p. 528 versus Blau [5] and Gade [18], p. 310.

  11. 11.

    See Ando [2], p. 5.

  12. 12.

    See Ando [2], p. 130ff.

  13. 13.

    For details on the spatial fluctuations of BQI and LEFE4 refer to de Vries et al. [14].

  14. 14.

    See Blau [5], p. 721.

  15. 15.

    See Mason et al. [36].

  16. 16.

    See Kaiser [28], e.g. p. 23 and p. 40.

  17. 17.

    See especially Kaiser [27], pp. 33–43 and Friedrich [17], Chap. 13.

  18. 18.

    This promise is made in Levinit [32], p. 157.

  19. 19.

    See e.g. Faller [16].

  20. 20.

    This is especially done for guitar and some vocal parts, see e.g. Kaiser [26], p. 116f and p.127 and Hamidovic [22], p. 57.

  21. 21.

    See e.g. Maempel [34], p. 236.

  22. 22.

    See e.g. Cabrera [11].

  23. 23.

    See e.g. Cabrera [11] and Zotter and Frank [54] versus Faller [16].

  24. 24.

    See e.g. Cabrera [11] and Kaiser [28], p. 154.

  25. 25.

    See Hamidovic [22], p. 57 and Kaiser [28], p. 152 and 156.

  26. 26.

    See Kaiser [26], p. 50 and pp. 57f.

  27. 27.

    See e.g. Faller [16] and Slavik and Weinzierl [45], p. 624.

  28. 28.

    See Kaiser [28], pp. 148f.

  29. 29.

    See e.g. Levinit [32], p. 158 and Rogers [41], p. 35.

  30. 30.

    See Zotter and Frank [54] for details on their channel decorrelation methods and their investigations of IACC and sound coloration.

  31. 31.

    See e.g. Kaiser [28], pp. 48ff although the meaning of the correlation coefficient is obviously misunderstood by this practician.

  32. 32.

    See e.g. Gerzon [19].

  33. 33.

    Their approach and experiment are documented in Zotter et al. [55]. The information that thetime lag was increased cannot be found in the paper; it was given verbally at the conference.

  34. 34.

    See Baalman [3], Chap. 7.

  35. 35.

    As has been reported e.g. in Ziemer [49], Ziemer and Bader [52] and Otondo and Rindel [38].

  36. 36.

    Refer to the literature cited in Sect. 2.2.

  37. 37.

    See Damaske and Ando [13], p. 236.


  1. Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF database. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New York, NY, pp. 99–102 (2001)

    Google Scholar 

  2. Ando, Y.: Auditory and Visual Sensation. Springer, New York (2010)

    Book  Google Scholar 

  3. Baalman, M.: On Wave Field Synthesis and Electro-acoustic Music, with a Particular Focus on the Reproduction of Arbitrarily Shaped Sound Sources. VDM, Saarbrücken (2008)

    Google Scholar 

  4. Beranek, L.L.: Concert Halls and Opera Houses: Music, Acoustics, and Architecture, 2nd edn. Springer, New York (2004)

    Book  Google Scholar 

  5. Blau, M.: Correlation of apparent source width with objective measures in synthetic sound fields. Acta Acust. United Acust 90(4), 720–730 (2004)

    Google Scholar 

  6. Blauert, J.: Spatial Hearing. The Psychophysics of Human Sound Source Localization (Revised edn.). MIT Press, Cambridge (1997)

    Google Scholar 

  7. Blauert, J., Brüggen, M., Hartung, K., Bronkhorst, A.W., Drullmann, R., Reynaud, G., Pellieux, L., Krebber, W., Sottek, R.: The AUDIS catalog of human HRTFs. In: Proceedings of the 16th International Congress on Acoustics, vol. 4, pp. 2901–2902, Seattle (1998)

    Google Scholar 

  8. Blauert, J., Cobben, W.: Some consideration of binaural cross correlation analysis. Acta Acust. United Acust 39(2), 96–104 (1978)

    Google Scholar 

  9. Blauert, J., Lindemann, W.: Auditory spaciousness: some further psychoacoustic analyses. J. Acoust. Soc. Am. 80(2), 533–542 (1986)

    Article  Google Scholar 

  10. Bradley, J.S., Reich, R.D., Norcross, S.G.: On the combined effects of early- and late-arriving sound on spatial impression in concert halls. J. Acoust. Soc. Am. 108(2), 651–661 (2000)

    Article  Google Scholar 

  11. Cabrera, A.: Pseudo-stereo techniques. CSound implementations. Csound J. 14 (Article number 3) (2011)

    Google Scholar 

  12. Corteel, E.: Synthesis of directional sources using wave field synthesis, possibilities, and limitations. EURASIP J. Adv. Sign. Process. Article ID 90509 (2007)

    Google Scholar 

  13. Damaske, P., Ando, Y.: Interaural crosscorrelation for multichannel loudspeaker reproduction. Acta Acust. United Acust 27(4), 232–238 (1972)

    Google Scholar 

  14. de Vries, D., Hulsebos, E.M., Baan, J.: Spatial fluctuations in measures for spaciousness. J. Acoust. Soc. Am. 110(2), 947–954 (2001)

    Article  Google Scholar 

  15. Deutsches Institut für Normung.: Akustik — Messung von Parametern der Raumakustik — Teil 1. Aufführungsräume (ISO 3382-1:2009); Deutsche Fassung EN ISO 3382-1:2009 (2009)

    Google Scholar 

  16. Faller, C.: Pseudostereophony revisited. In: 118th Audio Engineering Society Convention, Barcelona (2005)

    Google Scholar 

  17. Friedrich, H.J.: Tontechnik für Mediengestalter. Töne hören — Technik verstehen — Medien gestalten. Springer, Berlin (2008)

    Google Scholar 

  18. Gade, A.C.: Acoustics in halls for speech and music. In: Rossing, T.D. (ed.) Handbook of Acoustics, Chapter 9, pp. 301–350. Springer, Berlin (2007)

    Google Scholar 

  19. Gerzon, M.A.: The design of precisely coincident microphone arrays for stereo and surround sound. In: 50th Audio Engineering Society Convention, London (1975)

    Google Scholar 

  20. Griesinger, D.: Objective measures of spaciousness and envelopment. In: AES 16th International Conference: Spatial Sound Reproduction, Rovaniemi (1999)

    Google Scholar 

  21. Haas, H.: Einfluss eines Einfachechos auf die Hörsamkeit von Sprache. Acustica 1, 49–58 (1951)

    Google Scholar 

  22. Hamidovic, E.: The Systematic Mixing Guide. Systematic Productions, Melbourne (2012)

    Google Scholar 

  23. Heller, A.J.: Is my decoder ambisonic? In: 125th Audio Engineering Society Convention, San Francisco, CA (2008)

    Google Scholar 

  24. Hirvonen, T., Pulkki, V.: Center and spatial extent of auditory events as caused by multiple sound sources in frequency-dependent directions. Acta Acust. United Acust. 92(2), 320–330 (2006)

    Google Scholar 

  25. Jacques, R., Albrecht, B., Melchior, F., de Vries, D.: An approach for multichannel recording and reproduction of a sound source directivity. In: 119th Audio Engineering Society Convention, New York (2005)

    Google Scholar 

  26. Kaiser, C.: 1001 Mixing Tipps. mitp, Heidelberg (2012a)

    Google Scholar 

  27. Kaiser, C.: 1001 Recording Tipps. mitp, Heidelberg (2012b)

    Google Scholar 

  28. Kaiser, C.: 1001 Mastering Tipps. mitp, Heidelberg (2013)

    Google Scholar 

  29. Kling, J.W., Riggs, L.A. (eds.): Woodworth & Schlossberg’s Experimental Psychology, 3rd edn. Holt, Rinehart and Winston, New York (1971)

    Google Scholar 

  30. Laitinen, M.-V., Philajamäki, T., Erkut, C., Pulkki, V.: Parametric time-frequency representation of spatial sound in virtual worlds. ACM Trans. Appl. Percept. 9(2) (2012)

    Google Scholar 

  31. Laitinen, M.-V., Walther, A., Plogsties, J., Pulkki, V.: Auditory distance rendering using a standard 5.1 loudspeaker layout. In: 139th Audio Engineering Society Convention, New York, NY (2015)

    Google Scholar 

  32. Levinit, D.J.: Instrument (and vocal) recording tips and tricks. In: Greenbaum, K., Barzel, R. (eds.) Audio Anecdotes, vol. I, pp. 147–158. A K Peters, Natick (2004)

    Google Scholar 

  33. Lindemann, W.: Extension of a binaural cross-correlation model by contralateral inhibition. ii. the law of the first wave front. J. Acoust. Soc. Am. 80(6), 1623–1630 (1986)

    Article  Google Scholar 

  34. Maempel, H.-J. (2008). Medien und Klangästhetik. In: Bruhn, H., Kopiez, R., Lehmann, A.C. (eds.) Musikpsychologie. Das neue Handbuch, pp. 231–252. Rowohlt, Reinbek bei Hamburg (2008)

    Google Scholar 

  35. Martín, R.S., Witew, I.B., Arana, M., Vorländer, M.: Influence of the source orientation on the measurement of acoustic parameters. Acta Acust. United Acust. 93(3), 387–397 (2007)

    Google Scholar 

  36. Mason, R., Brookes, T., Rumsey, F.: The effect of various source signal properties on measurements of the interaural crosscorrelation coefficient. Acoust. Sci. Technol. 26(2), 102–113 (2005)

    Article  Google Scholar 

  37. Okano, T., Beranek, L.L., Hidaka, T.: Relations among interaural cross-correlation coefficient (IACC E ), lateral fraction (LF E ), and apparent source width (ASW) in concert halls. J. Acoust. Soc. Am. 104(1), 255–265 (1998)

    Article  Google Scholar 

  38. Otondo, F., Rindel, J.H.: The influence of the directivity of musical instrument in a room. Acta Acust. United Acust 90, 1178–1184 (2004)

    Google Scholar 

  39. Potard, G., Burnett, I.: A study on sound source apparent source shape and wideness. In: Proceedings of the 2003 International Conference on Auditory Display, Boston, MA (2003)

    Google Scholar 

  40. Potard, G., Burnett, I.: Decorrelation techniques for the rendering of apparent sound source width in 3d audio displays. In: Proceedings of the 7th International Conference of Digital Audio Effects, Naples (2004)

    Google Scholar 

  41. Rogers, S.E.: The art and craft of song mixing. In: Greenbaum, K., Barzel, R. (eds.) Audio Anecdotes, vol. II, pp. 29–38. A K Peters, Natick (2004)

    Google Scholar 

  42. Ross, B., Tremblay, K.L., Picton, T.W.: Physiological detection of interaural phase differences. J. Acoust. Soc. Am. 121(2), 1017–1027 (2007)

    Article  Google Scholar 

  43. Schroeder, M.R.: An artificial stereophonic effect obtained from using a single signal. In: 9th Audio Engineering Society Convention, New York, NY (1957)

    Google Scholar 

  44. Shimokura, R., Tronchin, L., Cocchi, A., Soeta, Y.: Subjective diffuseness of music signals convolved with binaural impulse responses. J. Sound Vibr. 330, 3526–3537 (2011)

    Article  Google Scholar 

  45. Slavik, K.M., Weinzierl, S.: Wiedergabeverfahren. In: Weinzierl, S. (ed.) Handbuch der Audiotechnik, Chapter 11, pp. 609–686. Springer, Berlin (2008)

    Google Scholar 

  46. Yanagawa, H., Anazawa, T., Itow, T.: Interaural correlation coefficients and their relation to the perception of subjective diffuseness. Acta Acust. United Acust. 71(3), 230–232 (1990)

    Google Scholar 

  47. Yanagawa, H., Tohyama, M.: Sound image broadening by a single reflection considering temporal change of interaural cross-correlation. Acta Acust. United Acust. 87(2), 247–252 (2001)

    Google Scholar 

  48. Yanagawa, H., Yamasaki, Y., Itow, T.: Effect of transient signal length on cross-correlation functions in a room. J. Acoust. Soc. Am. 84(5), 1728–1733 (1988)

    Article  Google Scholar 

  49. Ziemer, T.: Sound radiation characteristics of a shakuhachi with different playing techniques. In: Proceedings of the International Symposium on Musical Acoustics, Le Mans, pp. 549–555 (2014)

    Google Scholar 

  50. Ziemer, T.: Adapting room acoustic parameters to explain apparent source width of direct sound. In: ‘Musik und Wohlbefinden’. 31. Jahrestagung der DGM, Oldenburg, pp. 40–41 (2015)

    Google Scholar 

  51. Ziemer, T.: Wave field synthesis. In: Handbook of Systematic Musicology. Springer, Berlin (in Print) (2016)

    Google Scholar 

  52. Ziemer, T., Bader, R.: Complex point source model to calculate the sound field radiated from musical instruments. In: Proceedings of Meetings on Acoustics, vol. 25 (2015a)

    Google Scholar 

  53. Ziemer, T., Bader, R.: Implementing the radiation characteristics of musical instruments in a psychoacoustic sound field synthesis system. In: 139th Audio Engineering Society Convention, New York, NY (2015b)

    Google Scholar 

  54. Zotter, F., Frank, M.: Efficient phantom source widening. Arch. Acoust. 38(1), 27–37 (2013)

    Article  Google Scholar 

  55. Zotter, F., Frank, M., Kronlachner, M., Choi, J.-W.: Efficient phantom source widening and diffuseness in ambisonics. In: Proceedings of the EAA Joint Symposium on Auralization and Ambisonics, Berlin (2014)

    Google Scholar 

  56. Zwicker, E., Fastl, H.: Psychoacoustics. Facts and Models (Second updated edn.). Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tim Ziemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ziemer, T. (2017). Source Width in Music Production. Methods in Stereo, Ambisonics, and Wave Field Synthesis. In: Schneider, A. (eds) Studies in Musical Acoustics and Psychoacoustics. Current Research in Systematic Musicology, vol 4. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47291-1

  • Online ISBN: 978-3-319-47292-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics