Skip to main content

Identifying Origin/Destination Hotspots in Floating Car Data for Visual Analysis of Traveling Behavior

Part of the Lecture Notes in Geoinformation and Cartography book series (ICA)

Abstract

In this paper, we present the results of developing a geo-visual analytics application to support urban services. The goal is to allow non-GIS users to explore the taxi traveler’s hot spots in Shanghai extracted from one week taxi floating car data (FCD). To achieve this, we proposed a workflow based on the visualization pipeline. Firstly, we preprocess the data to extract the origins (o) and destinations (d) from the FCD and apply data mining methods to detect taxi traveler’s hot spots, to which semantics are further tagged using point of interest (POI) data extracted from OpenStreetMap (OSM) project. The detected hot spots are selected to show in the application for the user to conduct further visual analysis. Furthermore, we implement a web-based interactive visual explorative system, in which the graphic user interface contains multiple views (spatial, temporal and thematic) and interactive components are built up using the current web technologies. Finally, a possible use case of the application is introduced. Our results show that the developed geo-visual analytics application enables studying traveler’s activity patterns. The visual analysis can be conducted with this tool for several aspects. The visual queries help to detect when and where hot spots occur and to compare the temporal distributions for nearby hot spots.

Keywords

  • Visual analytics
  • Floating car data
  • Web visualization
  • Decision support system
  • Smart city

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-47289-8_13
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-47289-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • AGAFONKIN, V. 2014. Leaflet.heat [Online]. [Accessed 10.10 2015].

    Google Scholar 

  • AHAS, R., AASA, A., ROOSE, A., MARK, Ü. & SILM, S. 2008. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management, 29, 469–486.

    CrossRef  Google Scholar 

  • AHAS, R. & MARK, Ü. 2005. Location based services—new challenges for planning and public administration? Futures, 37, 547–561.

    CrossRef  Google Scholar 

  • ANDRIENKO, G., ANDRIENKO, N., FUCHS, G., RAIMOND, A.-M. O., SYMANZIK, J. & ZIEMLICKI, C. Extracting Semantics of Individual Places from Movement Data by Analyzing Temporal Patterns of Visits. First ACM SIGSPATIAL International Workshop on Computational Models of Place, 2013 Orlando, Fl, USA.

    Google Scholar 

  • ANDRIENKO, G., ANDRIENKO, N. & WROBEL, S. 2007. Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations Newsletter, 9, 38–46.

    CrossRef  Google Scholar 

  • ANDRIENKO, N. & ANDRIENKO, G. 2012. Visual analytics of movement: An overview of methods, tools and procedures. Information Visualization, 1473871612457601.

    Google Scholar 

  • BURGHARDT, D. & WIRTH, K. 2011. Comparison of Evaluation Methods for Field-Based Usability Studies of Mobile Map Applications. International Cartographic Conference 2011. Paris.

    Google Scholar 

  • CARTWRIGHT, W., CRAMPTON, J., GARTNER, G., MILLER, S., MITCHELL, K., SIEKIERSKA, E. & WOOD, J. 2001. Geospatial information visualization user interface issues. Cartography and Geographic Information Science, 28, 45–60.

    CrossRef  Google Scholar 

  • CHANG, H.-W., TAI, Y.-C., CHEN, H.-W. & HSU, J. Y.-J. 2008. iTaxi: Context-Aware Taxi Demand Hotspots Prediction Using Ontology and Data Mining Approaches. The 13th Conference on Artificila Intelligence and Applications.

    Google Scholar 

  • COOK, K. A. & THOMAS, J. J. 2005. Illuminating the path: The research and development agenda for visual analytics. Pacific Northwest National Laboratory (PNNL), Richland, WA (US).

    Google Scholar 

  • DING, L., YANG, J. & MENG, L. Visual Analytics for Understanding Traffic Flows of Transportation Hub from Movement Data. International Cartographic Conference 2015, 2015 Rio de Janeiro, Brazil.

    Google Scholar 

  • DOS SANTOS, S. & BRODLIE, K. 2004. Gaining understanding of multivariate and multidimensional data through visualization. Computers & Graphics, 28, 311–325.

    CrossRef  Google Scholar 

  • ESTER, M., KRIEGEL, H.-P., SANDER, J. & XU, X. A density-based algorithm for discovering clusters in large spatial databases with noise. 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996. 226–331.

    Google Scholar 

  • FEKETE, J.-D., VAN WIJK, J. J., STASKO, J. T. & NORTH, C. 2008. The value of information visualization. Information visualization. Springer.

    CrossRef  Google Scholar 

  • FRY, B. 2008. Visualizing Data, O’Reilly.

    Google Scholar 

  • HALLAHAN, N. 2014. q-cluster [Online]. [Accessed 16.11 2015].

    Google Scholar 

  • HEIDMANN, F., HERMANN, F. & PEISSNER, M. 2003. Interactive Maps on Mobile, Location-Based Systems: Design Solutions and Usability Testing. International Cartographic Conference. Durban, South Africa: ICA.

    Google Scholar 

  • HU, J., CAO, W., LUO, J. & YU, X. Dynamic modeling of urban population travel behavior based on data fusion of mobile phone positioning data and FCD. Geoinformatics, 2009 17th International Conference on, 2009. IEEE, 1–5.

    Google Scholar 

  • KEIM, D., ANDRIENKO, G., FEKETE, J.-D., GÖRG, C., KOHLHAMMER, J. & MELANÇON, G. 2008. Visual analytics: Definition, process, and challenges, Springer.

    Google Scholar 

  • KRUEGER, R., THOM, D. & ERTL, T. Visual Analysis of Movement Behavior Using Web Data for Context Enrichment. 2014 IEEE Pacific Visualization Symposium, 2014 Yokohama, Japan. IEEE, 193–200.

    Google Scholar 

  • LOBBEN, A. K., OLSON, J. M. & HUANG, J. 2005. Using fMRI in Cartographic Research. Proceedings of the 22nd International Cartographic Conference. A Coruna, Spain.

    Google Scholar 

  • MACEACHREN, A. M. 1995. How Maps Work: Representation, Visualization, and Design, The Guilford Press.

    Google Scholar 

  • MACEACHREN, A. M. & KRAAK, M.-J. 2001. Research challenges in geovisualization. Cartography and Geographic Information Science, 28, 3–12.

    CrossRef  Google Scholar 

  • MAYHEW, D. J. 1999. The Usability Engineering Lifecycle: a practitioner’s handbook for user interface design, San Francisco, USA, Morgan Kaufmann Publishers.

    CrossRef  Google Scholar 

  • MAZIMPAKA, J. & TIMPF, S. 2015. Exploring the Potential of Combining Taxi GPS and Flickr Data for Discovering Functional Regions. In: BACAO, F., SANTOS, M. Y. & PAINHO, M. (eds.) AGILE 2015. Springer International Publishing.

    Google Scholar 

  • MESSELODI, S., MODENA, C. M., ZANIN, M., DE NATALE, F. G., GRANELLI, F., BETTERLE, E. & GUARISE, A. 2009. Intelligent extended floating car data collection. Expert systems with applications, 36, 4213–4227.

    CrossRef  Google Scholar 

  • MILLER, H. J. & HAN, J. 2009. Geographic data mining and knowledge discovery, CRC Press.

    Google Scholar 

  • MOOSES, V. Geographical perspective in city sensing. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, 2013. ACM, 1351–1354.

    Google Scholar 

  • NIELSEN, A. 2004. User-Centered 3D Geovisualisation. Geoinformatics 2004: Proc. 12th Int. Conf. on Geoinformatics - Geospatial Information Research: Bridging the Pacific ans Atlantic. Gävle, Sweden.

    Google Scholar 

  • NIELSEN, J. 1993. Usability Engineering, Academic Press.

    Google Scholar 

  • NÖLLENBURG, M. 2007. Geographic Visualization. In: KERREN, A., EBERT, A. & MEYER, J. (eds.) Human-Centered Visualization Environments. Springer.

    Google Scholar 

  • ROTH, R. E. 2012. Cartographic Interaction Primitives: Framework and Synthesis. The Cartographic Journal, 49(4), 376–395.

    Google Scholar 

  • SARODNICK, F. & BRAU, H. 2011. Methoden der Usability Evaluation, Bern, Verlag Hans Huber.

    Google Scholar 

  • SUH, S. C. 2012. Practical Applications of Data Mining, Jones & Bartlett Learning.

    Google Scholar 

  • SWIENTY, O., JAHNKE, M., KUMKE, H. & REPPERMUND, S. 2008. Effective Visual Scanning of Geographic Information. In: SEBILLO, M., VITIELLO, G. & SCHAEFER, G. (eds.) Visual Information Systems. Web-Based Visual Information Search and Management. Heidelberg, Berlin: Springer.

    Google Scholar 

  • TOBLER, W. 1979. Pycnophylactic Interpolation for Geographical Regions. Journal of the American Statistical Association, 74, 519–530.

    CrossRef  Google Scholar 

  • TOMINSKI, C. 2006. Event based visualization for user centered visual analysis. Dr.-Ing., Universität Rostock.

    Google Scholar 

  • WOOD, J., DYKES, J. & SLINGSBY, A. 2010. Visualization of Origins, Destinations and Flows with OD Maps. The Cartographic Journal, 47, 117–129.

    CrossRef  Google Scholar 

  • WOOD, J., SLINGSBY, A. & DYKES, J. 2011. Visualizing the dynamics of London’s bicycle hire scheme. Cartographica - The International Journal for Geographic Information and Geovisualization, 46, 239–251.

    CrossRef  Google Scholar 

  • YUAN, J., ZHENG, Y. & XIE, X. Discovering regions of different functions in a city using human mobility and POIs. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012. ACM, 186–194.

    Google Scholar 

  • ZHANG, W., LI, S. & PAN, G. Mining the semantics of origin-destination flows using taxi traces. 2012 ACM Conference on Ubiquitous Computing, 2012 Pittsburgh, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Jahnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jahnke, M., Ding, L., Karja, K., Wang, S. (2017). Identifying Origin/Destination Hotspots in Floating Car Data for Visual Analysis of Traveling Behavior. In: Gartner, G., Huang, H. (eds) Progress in Location-Based Services 2016. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-47289-8_13

Download citation