Identifying Origin/Destination Hotspots in Floating Car Data for Visual Analysis of Traveling Behavior

  • Mathias JahnkeEmail author
  • Linfang Ding
  • Katre Karja
  • Shirui Wang
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


In this paper, we present the results of developing a geo-visual analytics application to support urban services. The goal is to allow non-GIS users to explore the taxi traveler’s hot spots in Shanghai extracted from one week taxi floating car data (FCD). To achieve this, we proposed a workflow based on the visualization pipeline. Firstly, we preprocess the data to extract the origins (o) and destinations (d) from the FCD and apply data mining methods to detect taxi traveler’s hot spots, to which semantics are further tagged using point of interest (POI) data extracted from OpenStreetMap (OSM) project. The detected hot spots are selected to show in the application for the user to conduct further visual analysis. Furthermore, we implement a web-based interactive visual explorative system, in which the graphic user interface contains multiple views (spatial, temporal and thematic) and interactive components are built up using the current web technologies. Finally, a possible use case of the application is introduced. Our results show that the developed geo-visual analytics application enables studying traveler’s activity patterns. The visual analysis can be conducted with this tool for several aspects. The visual queries help to detect when and where hot spots occur and to compare the temporal distributions for nearby hot spots.


Visual analytics Floating car data Web visualization Decision support system Smart city 


  1. AGAFONKIN, V. 2014. Leaflet.heat [Online]. [Accessed 10.10 2015].Google Scholar
  2. AHAS, R., AASA, A., ROOSE, A., MARK, Ü. & SILM, S. 2008. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management, 29, 469–486.CrossRefGoogle Scholar
  3. AHAS, R. & MARK, Ü. 2005. Location based services—new challenges for planning and public administration? Futures, 37, 547–561.CrossRefGoogle Scholar
  4. ANDRIENKO, G., ANDRIENKO, N., FUCHS, G., RAIMOND, A.-M. O., SYMANZIK, J. & ZIEMLICKI, C. Extracting Semantics of Individual Places from Movement Data by Analyzing Temporal Patterns of Visits. First ACM SIGSPATIAL International Workshop on Computational Models of Place, 2013 Orlando, Fl, USA.Google Scholar
  5. ANDRIENKO, G., ANDRIENKO, N. & WROBEL, S. 2007. Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations Newsletter, 9, 38–46.CrossRefGoogle Scholar
  6. ANDRIENKO, N. & ANDRIENKO, G. 2012. Visual analytics of movement: An overview of methods, tools and procedures. Information Visualization, 1473871612457601.Google Scholar
  7. BURGHARDT, D. & WIRTH, K. 2011. Comparison of Evaluation Methods for Field-Based Usability Studies of Mobile Map Applications. International Cartographic Conference 2011. Paris.Google Scholar
  8. CARTWRIGHT, W., CRAMPTON, J., GARTNER, G., MILLER, S., MITCHELL, K., SIEKIERSKA, E. & WOOD, J. 2001. Geospatial information visualization user interface issues. Cartography and Geographic Information Science, 28, 45–60.CrossRefGoogle Scholar
  9. CHANG, H.-W., TAI, Y.-C., CHEN, H.-W. & HSU, J. Y.-J. 2008. iTaxi: Context-Aware Taxi Demand Hotspots Prediction Using Ontology and Data Mining Approaches. The 13th Conference on Artificila Intelligence and Applications. Google Scholar
  10. COOK, K. A. & THOMAS, J. J. 2005. Illuminating the path: The research and development agenda for visual analytics. Pacific Northwest National Laboratory (PNNL), Richland, WA (US).Google Scholar
  11. DING, L., YANG, J. & MENG, L. Visual Analytics for Understanding Traffic Flows of Transportation Hub from Movement Data. International Cartographic Conference 2015, 2015 Rio de Janeiro, Brazil.Google Scholar
  12. DOS SANTOS, S. & BRODLIE, K. 2004. Gaining understanding of multivariate and multidimensional data through visualization. Computers & Graphics, 28, 311–325.CrossRefGoogle Scholar
  13. ESTER, M., KRIEGEL, H.-P., SANDER, J. & XU, X. A density-based algorithm for discovering clusters in large spatial databases with noise. 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996. 226–331.Google Scholar
  14. FEKETE, J.-D., VAN WIJK, J. J., STASKO, J. T. & NORTH, C. 2008. The value of information visualization. Information visualization. Springer.CrossRefGoogle Scholar
  15. FRY, B. 2008. Visualizing Data, O’Reilly.Google Scholar
  16. HALLAHAN, N. 2014. q-cluster [Online]. [Accessed 16.11 2015].Google Scholar
  17. HEIDMANN, F., HERMANN, F. & PEISSNER, M. 2003. Interactive Maps on Mobile, Location-Based Systems: Design Solutions and Usability Testing. International Cartographic Conference. Durban, South Africa: ICA.Google Scholar
  18. HU, J., CAO, W., LUO, J. & YU, X. Dynamic modeling of urban population travel behavior based on data fusion of mobile phone positioning data and FCD. Geoinformatics, 2009 17th International Conference on, 2009. IEEE, 1–5.Google Scholar
  19. KEIM, D., ANDRIENKO, G., FEKETE, J.-D., GÖRG, C., KOHLHAMMER, J. & MELANÇON, G. 2008. Visual analytics: Definition, process, and challenges, Springer.Google Scholar
  20. KRUEGER, R., THOM, D. & ERTL, T. Visual Analysis of Movement Behavior Using Web Data for Context Enrichment. 2014 IEEE Pacific Visualization Symposium, 2014 Yokohama, Japan. IEEE, 193–200.Google Scholar
  21. LOBBEN, A. K., OLSON, J. M. & HUANG, J. 2005. Using fMRI in Cartographic Research. Proceedings of the 22nd International Cartographic Conference. A Coruna, Spain.Google Scholar
  22. MACEACHREN, A. M. 1995. How Maps Work: Representation, Visualization, and Design, The Guilford Press.Google Scholar
  23. MACEACHREN, A. M. & KRAAK, M.-J. 2001. Research challenges in geovisualization. Cartography and Geographic Information Science, 28, 3–12.CrossRefGoogle Scholar
  24. MAYHEW, D. J. 1999. The Usability Engineering Lifecycle: a practitioner’s handbook for user interface design, San Francisco, USA, Morgan Kaufmann Publishers.CrossRefGoogle Scholar
  25. MAZIMPAKA, J. & TIMPF, S. 2015. Exploring the Potential of Combining Taxi GPS and Flickr Data for Discovering Functional Regions. In: BACAO, F., SANTOS, M. Y. & PAINHO, M. (eds.) AGILE 2015. Springer International Publishing.Google Scholar
  26. MESSELODI, S., MODENA, C. M., ZANIN, M., DE NATALE, F. G., GRANELLI, F., BETTERLE, E. & GUARISE, A. 2009. Intelligent extended floating car data collection. Expert systems with applications, 36, 4213–4227.CrossRefGoogle Scholar
  27. MILLER, H. J. & HAN, J. 2009. Geographic data mining and knowledge discovery, CRC Press.Google Scholar
  28. MOOSES, V. Geographical perspective in city sensing. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, 2013. ACM, 1351–1354.Google Scholar
  29. NIELSEN, A. 2004. User-Centered 3D Geovisualisation. Geoinformatics 2004: Proc. 12th Int. Conf. on Geoinformatics - Geospatial Information Research: Bridging the Pacific ans Atlantic. Gävle, Sweden.Google Scholar
  30. NIELSEN, J. 1993. Usability Engineering, Academic Press.Google Scholar
  31. NÖLLENBURG, M. 2007. Geographic Visualization. In: KERREN, A., EBERT, A. & MEYER, J. (eds.) Human-Centered Visualization Environments. Springer.Google Scholar
  32. ROTH, R. E. 2012. Cartographic Interaction Primitives: Framework and Synthesis. The Cartographic Journal, 49(4), 376–395.Google Scholar
  33. SARODNICK, F. & BRAU, H. 2011. Methoden der Usability Evaluation, Bern, Verlag Hans Huber.Google Scholar
  34. SUH, S. C. 2012. Practical Applications of Data Mining, Jones & Bartlett Learning.Google Scholar
  35. SWIENTY, O., JAHNKE, M., KUMKE, H. & REPPERMUND, S. 2008. Effective Visual Scanning of Geographic Information. In: SEBILLO, M., VITIELLO, G. & SCHAEFER, G. (eds.) Visual Information Systems. Web-Based Visual Information Search and Management. Heidelberg, Berlin: Springer.Google Scholar
  36. TOBLER, W. 1979. Pycnophylactic Interpolation for Geographical Regions. Journal of the American Statistical Association, 74, 519–530.CrossRefGoogle Scholar
  37. TOMINSKI, C. 2006. Event based visualization for user centered visual analysis. Dr.-Ing., Universität Rostock.Google Scholar
  38. WOOD, J., DYKES, J. & SLINGSBY, A. 2010. Visualization of Origins, Destinations and Flows with OD Maps. The Cartographic Journal, 47, 117–129.CrossRefGoogle Scholar
  39. WOOD, J., SLINGSBY, A. & DYKES, J. 2011. Visualizing the dynamics of London’s bicycle hire scheme. Cartographica - The International Journal for Geographic Information and Geovisualization, 46, 239–251.CrossRefGoogle Scholar
  40. YUAN, J., ZHENG, Y. & XIE, X. Discovering regions of different functions in a city using human mobility and POIs. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012. ACM, 186–194.Google Scholar
  41. ZHANG, W., LI, S. & PAN, G. Mining the semantics of origin-destination flows using taxi traces. 2012 ACM Conference on Ubiquitous Computing, 2012 Pittsburgh, USA.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mathias Jahnke
    • 1
    Email author
  • Linfang Ding
    • 1
    • 2
  • Katre Karja
    • 1
  • Shirui Wang
    • 1
  1. 1.Chair of CartographyTechnical University of MunichMunichGermany
  2. 2.Group of Applied GeoinformaticsUniversity of AugsburgAugsburgGermany

Personalised recommendations