Skip to main content

Development of a Road Deficiency GIS Using Data from Automated Multi-sensor Systems

  • Conference paper
  • First Online:
Progress in Location-Based Services 2016

Part of the book series: Lecture Notes in Geoinformation and Cartography ((ICA))

Abstract

Traditional survey methods have long been used in the field of highway engineering to measure the cross-slope, longitudinal grade, rut depth, and ride quality of existing roadways. However, these methods are slow, tedious, labor intensive, and almost always require partial or full lane closure resulting in traffic delays, increase in costs, and inconvenience to the traveling public. Advances in inertial sensor and inertial navigation technologies have allowed their implementation as state-of-the-art mobile data collection systems. The Florida Department of Transportation (FDOT) operates two mobile data collection systems referred to as Multi-Purpose Survey Vehicles (MPSVs). They collect pavement data including but not limited to cross-slope, longitudinal grade, and wheel-paths’ rut depth at typical highway speeds. The MPSVs are equipped with a position and orientation system (POS) coupled with an inertial profiler unit. The core of the POS consists of a tightly-coupled Inertial Measurement Unit (IMU) and a Differential Global Positioning System (DGPS). This paper presents a methodology for the development of an Automated Roadway Deficiency Information System using Geographical Information System (GIS) software to map areas prone to hydroplaning. The functionality of the developed information system was tested on a pilot project using MPSV collected data. Highway agencies can successfully implement this methodology to complement and enhance their existing safety and pavement management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andriejauskasa T, Vorobjovasa V, Mielonasb V (2014) Evaluation of skid resistance characteristics and measurement methods. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.

    Google Scholar 

  • APPLANIX (2015) POS-LV Specifications, http://www.applanix.com/media/downloads/products/specs/poslv_specifications12032012.pdf, Accessed 5 August 2016.

  • Bham G H, Nasir G, Darter M. I. (2001) Illinois’s Experience with Pavement Analysis and Management Systems. Paper presented to Transportation Research Board 80th Annual Meeting, Washington, D.C.

    Google Scholar 

  • Bolzon G, Caroti G, Piemonte A (2007) Accuracy Check of Road’s Cross Slope Evaluation Using MMS Vehicle. The 5th International Symposium on Mobile Mapping Technology, Padua, Italy.

    Google Scholar 

  • Curtin K M, Nicoara G, Arifin R R (2007) A comprehensive process for linear referencing. URISA Journal, 19(2), 41–50.

    Google Scholar 

  • FDOT (2016) FDOT Plans Preparation Manual – Design Criteria and Process, Florida Department of Transportation (Volume 1), Roadway Design Office, Tallahassee, Florida.

    Google Scholar 

  • FHWA (2001) Adequacy of Rut Bar Data Collection, FHWA, Office of Policy, Federal Highway Administration, Washington, D.C., TechBrief RD-01–027.

    Google Scholar 

  • Gillespie, T.D., Sayers, M.W (1987) Methodology for Road Roughness Profiling and Rut Depth Measurement, World Bank Technical Paper No. 46, The World Bank, Washington, D.C.

    Google Scholar 

  • Glennon J. D. (2007) Hydroplaning – The Trouble with Highway Cross Slope, http://www.johncglennon.com/papers.cfm?PaperID=8, Accessed 1 June 2016.

  • Goodman, J E (2001) Maps in the fast lane—linear referencing and dynamic segmentation. http://www.directionsmag.com/article.php?article_id=126, Accessed 2 August 2016.

  • Gunaratne M, Mraz A, Sokolic I (2003) Study of the Feasibility of Video Logging with Pavement Condition Evaluation, Florida Department of Transportation, Report No. BC-965, Florida.

    Google Scholar 

  • Guven O, Melville J (1999) Pavement Cross Slope Design – A Technical Review, Auburn University, Highway Research Center, Auburn, Alabama.

    Google Scholar 

  • Jackson N M (2008) Harmonization of Texture and Skid Resistance Measurements. Florida Department of Transportation Research Report, Fl.DOT/SMO/08-BDH-23, University of North Florida, College of Computing, Engineering and Construction, Florida, USA.

    Google Scholar 

  • Jacobs B (2015) Crash GIS Data Creation, https://fdotewp1.dot.state.fl.us/TrafficSafetyWebPortal/post/Post_694_WhitePaper_CrashGISDataCreation_v7_1_FINAL_2015-05-18.pdf, Accessed 2 August 2016.

  • Jelokhani-Niaraki M R, Alesheikh A A, Alimohammadi A, Sadeghi-Niaraki A (2009) Designing road maintenance data model using dynamic segmentation technique. In International Conference on Computational Science and Its Applications (pp. 442–452). Springer Berlin Heidelberg.

    Google Scholar 

  • Kiema J B K, Mwangi J M (2009) A Prototype GIS-Based Road Pavement System, Journal of Civil Engineering Research and Practice, Vol. 6, No. 1.

    Google Scholar 

  • Longley P A, Goodchild M F, Maguire D J, Rhind D W (2005) Geographic Information Systems and Science. John Wiley and Sons, West Sussex, England.

    Google Scholar 

  • Mraz A, Nazef A (2008) Innovative Techniques with Multi-Purpose Survey Vehicle for Automated Analysis of Cross-Slope Data, Transportation Research Record 2068, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • NCHRP (1974) Highway Location Reference Method, Synthesis of Highway Practice 21, National Academy of Sciences, Washington D. C.

    Google Scholar 

  • Neu J (2014) A Tightly-Coupled INS/GPS Integration Using a MEMS IMU – Thesis, Air Force Institute of Technology, Department of the Air Force, Air University, Ohio.

    Google Scholar 

  • Sayers M W, Gillespie T D, Queiroz C A V (1986) The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements, World Bank Technical Paper No. 45, The World Bank, Washington D. C.

    Google Scholar 

  • Sayers M W, Karamihas S M (1998) The Little Book of Profiling: Basic Information about Measuring and Interpreting Road Profiles. University of Michigan Transportation Research Institute, Ann Arbor, MI, USA.

    Google Scholar 

  • Scarponcini, P (2002) Generalized Model for Linear Referencing in Transportation. GeoInformatica, 6(1), 35–55.

    Article  Google Scholar 

  • Souleyrette R, Hallmark S, Pattnaik S, O’Brien M, Veneziano D (2003) Grade and Cross Slope Estimation from LIDAR-based Surface Models. U.S. Department of Transportation, Iowa Department of Transportation. MTC-2001-02.

    Google Scholar 

  • TRB (2004) NCHRP Synthesis 334: Automated Pavement Distress Collection Techniques. A Synthesis of Highway Practice, Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Tsai Y, Chengbo A, Wang Z, Pitts E (2013) Mobile Cross-Slope Measurement Method Using Lidar Technology, Transportation Research Record Journal of the Transportation Research Board 2 (2367), pp. 53–59.

    Article  Google Scholar 

  • Tsai Y, Gratton B (2004) Successful Implementation of a GIS-Based Pavement Management System. Applications of Advanced Technologies in Transportation Engineering, pp. 513–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mraz, A., Nazef, A. (2017). Development of a Road Deficiency GIS Using Data from Automated Multi-sensor Systems. In: Gartner, G., Huang, H. (eds) Progress in Location-Based Services 2016. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-47289-8_12

Download citation

Publish with us

Policies and ethics