A Comparative Study of Image Enhancement Methods in Tree-Ring Analysis

  • Anna Fabijańska
  • Małgorzata Danek
  • Joanna Barniak
  • Adam Piórkowski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 525)

Abstract

In this paper the problem of semiautomatic tree-ring detection in scanned images of European larch wood sample is considered. In particular, the attention is paid to find image enhancement approach which increases the number of tree rings detected in the wood image by the CooRecorder software. The results provided by different preprocessing methods (including thresholding, contrast enhancement and various spatial filters) are assessed by means of the number of the detected tree rings. Discussion and interpretation of the results are also provided.

Keywords

Edge detection Segmentation Image processing Preprocessing Tree-ring analysis European larch 

References

  1. 1.
    Chandy, D.A., Johnson, J.S., Selvan, S.E.: Texture feature extraction using gray level statistical matrix for content-based mammogram retrieval. Multimedia Tools Appl. 72(2), 2011–2024 (2014)CrossRefGoogle Scholar
  2. 2.
    El-Zaart, A.: Images thresholding using isodata technique with gamma distribution. Pattern Recogn. Image Anal. 20(1), 29–41 (2010)CrossRefGoogle Scholar
  3. 3.
    Habrat, K., Habrat, M., Gronkowska-Serafin, J., Piórkowski, A.: Cell detection in corneal endothelial images using directional filters. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 113–123. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23814-2_14 CrossRefGoogle Scholar
  4. 4.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)CrossRefGoogle Scholar
  5. 5.
    Laggoune, H., Guesdon, V., et al.: Tree ring analysis. In: Canadian Conference on Electrical and Computer Engineering, pp. 1574–1577. IEEE (2005)Google Scholar
  6. 6.
    Norell, K.: Automatic counting of annual rings on pinus sylvestris end faces in sawmill industry. Comput. Electron. Agric. 75(2), 231–237 (2011)CrossRefGoogle Scholar
  7. 7.
    Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39796-2_1 CrossRefGoogle Scholar
  8. 8.
    Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. J. VLSI Sig. Process. Syst. 38(1), 35–44 (2004)CrossRefGoogle Scholar
  9. 9.
    Serra, J., Vincent, L.: An overview of morphological filtering. Circ. Syst. Sig. Process. 11(1), 47–108 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Sundari, P.M., Kumar, S.B.R.: A study of image processing in analyzing tree ring structure. Int. J. Res. Humanit. Arts Lit. 2(3), 13–18 (2014)Google Scholar
  11. 11.
    Tadeusiewicz, R., Korohoda, P.: Computer Analysis and Image Processing. Progress of Telecommunication Foundation Publishing House, Krakow (1997)Google Scholar
  12. 12.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV. Academic Press, Boston (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anna Fabijańska
    • 1
  • Małgorzata Danek
    • 2
  • Joanna Barniak
    • 3
  • Adam Piórkowski
    • 4
  1. 1.Institute of Applied Computer ScienceLodz University of TechnologyLodzPoland
  2. 2.Department of Environmental Analysis, Mapping and Economic GeologyAGH University of Science and TechnologyKrakowPoland
  3. 3.Department of General Geology and GeotourismAGH University of Science and TechnologyKrakowPoland
  4. 4.Department of Geoinfomatics and Applied Computer ScienceAGH University of Science and TechnologyKrakowPoland

Personalised recommendations