Skip to main content

Post-combustion Carbon Dioxide Capture with Aqueous (Piperazine + 2-Amino-2-Methyl-1-Propanol) Blended Solvent: Performance Evaluation and Analysis of Energy Requirements

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

  • 1597 Accesses

Abstract

Post-combustion CO2 capture (PCC) and its sequestration has been found to be a viable option for reducing CO2 in the earth’s atmosphere. There are many technological options for separation of CO2 from a post combustion gas stream. However, regenerative chemical absorption process is considered to be a near-term feasible solution for this. In regenerative chemical absorption, the key component is the solvent, which plays a major role in the process efficiency and economics. There are many conventional and newer commercial solvents with patented technologies available for this process. In this chapter, the suitability of aqueous AMP along with PZ as an energy efficient mixed solvent for the PCC process have been presented by critically analyzing the absorption rate, equilibrium thermodynamics, reaction kinetics as well as regeneration energy requirement. Energy analysis from bench scale and pilot scale studies, and modelling and simulation work have been investigated and compared with the bench marked solvent MEA. The role of important solvent properties for this application, i.e., density, viscosity, physical gas solubility, reaction mechanism and kinetics, equilibrium solubility and heat of absorption are found to be suitable for the CO2 capture by AMP + PZ solvent. Besides, it is also found that the negative impact such as, corrosion, thermal and oxidative degradation, possible amine and nitrosamine emission from the capture plant have less impact to the environment. Heat energy requirements of this process are found to be in the range of 2.9–3.7 GJ/tCO2 for different conditions such as, %CO2 capture, etc., and from different study. This energy requirement is about 20% less than that of the bench marked MEA solvent. All this performance indicators show that the AMP + PZ blended solvent is a competitive energy efficient alternative one for CO2 capture by chemical absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Amino-2-methyl-1-propanol

AMPH+ :

Protonated AMP

CCS:

Carbon capture and storage

CCTs:

Clean coal technologies

CH4 :

Methane

CO 2‒3 :

Carbonate

CO2 :

Carbon dioxide

DAE:

Differential and algebraic equations

DRS:

Data regression system

\(\text{E}_{{{\text{CO}}_{2} }}\) :

Enhancement factor

eNRTL model:

Electrolyte non-random two-liquid model

GC:

Gas chromatography

HCO 3 :

Bicarbonate

He:

Helium

H+PZCOO :

Protonated PZ carbamate

k:

Reaction rate constant

L/G:

Liquid to gas ratio

MDEA:

Methyldiethanolamine

MEA:

Monoethanolamine

N2 :

Nitrogen

N2O:

Nitrous oxide

NOx :

Nitrogen oxide

O2 :

Oxygen

\(p_{amine}\) :

Partial pressure of amine

PCC:

Post-combustion CO2 capture

\(p_{{{\text{CO}}_{2} }}\) :

Partial pressure of CO2

\(p_{{{\text{H}}_{2} {\text{O}}}}\) :

Partial pressure of H2O

PZ:

Piperazine

PZCOO :

PZ carbamate

PZ(COO)2 :

PZ dicarbamate

PZH+ :

Protonated PZ

R:

Ideal gas constant

RA:

Rate of absorption

SOx :

Sulfur oxide

T:

Absolute temperature

VLE:

Vapor-liquid equilibrium

\(\alpha_{{{\text{CO}}_{2} }}\) :

CO2 loading (mol CO2/mol amine)

\(\alpha_{{p_{{{\text{CO}}_{2,lean} }} }}\) :

CO2 loading at regenerator outlet pressure

\(\alpha_{{p_{{{\text{CO}}_{2,rich} }} }}\) :

CO2 loading at absorber inlet pressure

\(- \Delta H_{abs}\) :

Heat of absorption

γ:

Activity coefficient

φ:

Fugacity coefficient

\(\frac{\delta ni}{{\delta {\text{CO}}_{{_{2} }} }}\) :

Mol change of species with mol change of CO2 in reaction

References

  1. Dash SK, Bandyopadhyay SS (2016) Studies on the effect of addition of piperazine and sulfolane into aqueous solution of N-methyldiethanolamine for CO2 capture and VLE modelling using enrtl equation. Int J Greenhouse Gas Control 44:227–237

    Article  Google Scholar 

  2. Dash SK, Bandyopadhyay SS (2013) Carbon dioxide capture: absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol. J Clean Energy Technol 1(3):184–188

    Article  Google Scholar 

  3. Khan AA, Haldera GN, Saha AK (2016) Experimental investigation of sorption characteristics of capturing carbon dioxide into piperazine activated aqueous 2-amino-2-methyl-1-propanol solution in a packed column. Int J Greenhouse Gas Control 44:217–226

    Article  Google Scholar 

  4. Hairul NAH, Shariff AM, Bustam MA (2016) Mass transfer performance of 2-amino-2-methyl-1-propanol and piperazine promoted 2-amino-2-methyl-1-propanol blended solvent in high pressure CO2 absorption. Int J Greenhouse Gas Control 49:121–127

    Article  Google Scholar 

  5. Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int. J. Global Warming 7(2)

    Google Scholar 

  6. Svendsen, H (2010) CO2 capture by solvents; possibilities and challenges. In: Proceedings of post-combustion CO2 capture workshop. Tufts European Center Talloires, France, 11–13 July 2010

    Google Scholar 

  7. Kishimoto S, Hirata T, Iijima M, Ohishi T, Higaki K, Mitchell R (2009) Current status of MHI’s CO2 recovery technology and optimization of CO2 recovery plant with a PC fired power plant. Energy Procedia 1(1):1091–1098

    Article  Google Scholar 

  8. Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Procedia 1:783–790

    Article  Google Scholar 

  9. Jockenhoevel T, Schneider R, Rode H (2010) Validation of a second-generation post-combustion capture technology—results from POSTCAP pilot plant operation. In: Powergen Europe, 8–10 June 2010

    Google Scholar 

  10. Paul S, Mandal B (2006) Density and viscosity of aqueous solutions of (N-Methyldiethanolamine + Piperazine) and (2-Amino-2-methyl-1-propanol + Piperazine) from (288 to 333) K. J Chem Eng Data 51:808–1810

    Google Scholar 

  11. Sun WC, Yong CB, Li MH (2005) Kinetics of absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. Chem Eng Sci 60:503–516

    Article  Google Scholar 

  12. Samanta A, Bandhyopadhyay SS (2006) Density and viscosity of aqueous solutions of piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from 298 to 333 K. J Chem Eng Data 51:467–470

    Article  Google Scholar 

  13. Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS (2011) Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol solvent. Chem Eng Sci 66:3223–3233

    Article  Google Scholar 

  14. Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS (2011) Vapour liquid equilibria of carbon dioxide in dilute and concentrated aqueous solutions of piperazine at low to high pressure. Fluid Phase Equilib 300:145–154

    Article  Google Scholar 

  15. Dash SK, Samanta AN, Bandyopadhyay SS (2011) (Vapour + liquid) equilibria (VLE) of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol: New data and modelling using enrtl-equation. J Chem Thermodyn 43:1278–1285

    Article  Google Scholar 

  16. Dash SK, Samanta AN, Bandyopadhyay SS (2012) Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine. J Chem Thermodyn 51:120–125

    Article  Google Scholar 

  17. Bruder P, Grimstvedt A, Mejdell T, Svendsen HF (2011) CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-peopanol. Chem Eng Sci 66:6193–6198

    Article  Google Scholar 

  18. Tong D, Maitland GC, Trusler M, Fennell PS (2013) Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and piperazine. Chem Eng Sci. http://dx.doi.org/10.1016.ces.2013.05.034

  19. Hartono A, Saeed M, Ciftja AF, Svendsen HF (2013) Binary and ternary VLE of the 2-amino-2-methyl-1-propanol (AMP)/piperazine (Pz)/water system. Chem Eng Sci 91:151–161

    Article  Google Scholar 

  20. Haghtalab A, Eghbali H, Shojaeian A (2014) Experiment and modelling solubility of CO2 in aqueous solutions of Diisopropanolamine + 2-amino-2-methyl-1-propanol + Piperazine at high pressures. J Chem Thermodyn 71:71–83

    Article  Google Scholar 

  21. Halim HNA, Shariff AM, Bustam MA (2015) High pressure CO2 absorption from natural gas using piperazine promoted 2-amino-2-methyl-1-propanol in a packed absorption column. Sep Purif Technol 152:87–93

    Article  Google Scholar 

  22. Dash SK, Samanta AN, Bandyopadhyay SS (2011) Solubility of carbon dioxide in aqueous solution of 2-amino-2-methyl-1-propanol and piperazine. Fluid Phase Equilib 307:166–174

    Article  Google Scholar 

  23. Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543

    Article  Google Scholar 

  24. Derks PWJ, Dijkstra HBS, Hogendoorn JA, Versteeg GF (2005) Solubility of carbon dioxide in aqueous piperazine solutions. AIChE J 51:2311–2327

    Article  Google Scholar 

  25. Hillard M (2008) A predictive thermodynamics model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide. Ph.D. Thesis, The University of Texas at Austin

    Google Scholar 

  26. Bougie F, Iliuta MC (2012) Strerically hindered amine-based absorbents for the removal of CO2 from gas streams. J Chem Eng Eng Data 57:635–669

    Article  Google Scholar 

  27. Tontiwachwuthikul P, Meisen A, choon JL (1991) Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. J Chem Eng Data 36:130–133

    Article  Google Scholar 

  28. Teng TT, Mather AE (1989) Solubility of H2S, CO2 and their mixtures in an AMP solution. Can J Chem Eng 67:846–850

    Article  Google Scholar 

  29. Dash SK (2012) Carbon dioxide capture by Absorption in piperazine activated 2-Amino-2-methyl-1-propanol solvent. Ph.D. Thesis. Indian Institute of Technology, Kharagpur

    Google Scholar 

  30. Yang ZY, Soriano AN, Caparanga AR, Li MH (2010) Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-peopanol + piperazine + water). J Chem Thermodyn 42:659–665

    Article  Google Scholar 

  31. Xie Q, Aroonwilas A, Veawab A (2013) Measurement of Heat of CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter. Energy Procedia 37:826–833

    Article  Google Scholar 

  32. Nguyen T, Hilliard M, Rochelle GT (2010) Amine Volatility in CO2 capture. Int J Greenhouse Gas Control 4:707–715

    Article  Google Scholar 

  33. Khakharia P, Brachert L, Mertensc J, Anderlohr C, Huizinga A, Fernandez ES, Schallert B, Schaber K, Vlugt TJH, Goetheer E (2016) nderstanding aerosol based emissions in a post combustion CO2 capture process: Parameter testing and mechanisms. Int J Greenhouse Gas Control 34:63–74

    Article  Google Scholar 

  34. Samanta A, Bandyopadhyay SS (2009) Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chem Eng Sci 64:1185–1194

    Article  Google Scholar 

  35. Veawab A, Tontiwachwuthikul P, Bhole SD (1996) Corrosivity in 2-amino-2-methyl-1-peopanol (AMP)-CO2 system. Chem Eng Commun 144:65–71

    Article  Google Scholar 

  36. Veawab A, Tontiwachwuthikul P, Bhole SD (1997) Studies of corrosion and corrosion control in a CO2-2-amino-2-methyl-1-peopanol (AMP) environment. Ind Eng Chem Res 36:264–269

    Article  Google Scholar 

  37. Freeman SA, Dugas R, Wagener DV, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4:119–124

    Article  Google Scholar 

  38. Wang T, Jens K (2012) Oxidative degradation of aqueous 2-Amino-2-methyl-1-propanol solvent for post combustion CO2 capture. Ind Eng Chem Res 51:6529–6536

    Article  Google Scholar 

  39. Wang T, Jens K-J (2014) Oxidative degradation of aqueous PZ solution and AMP/PZ for post-combustion carbon dioxide capture. Int J Greenhouse Gas Control 24:98–105

    Article  Google Scholar 

  40. Mazari SA, Ali B, Jan BM, Saeed IM (2014) Degradation study of piperazine, its blends and structural analogs for CO2 capture: a review. Int J Greenhouse Gas Control 31:214–228

    Article  Google Scholar 

  41. Mangalapally HP, Hasse H (2011) Pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine. Chem Eng Sci 66:5512–5522

    Article  Google Scholar 

  42. Notz R, Mangalapally HP, Hasse H (2012) Post combustion CO2 capture by reactive absorption: pilot plant description and results of systematic studies with MEA. Int J Greenhouse Gas Control 6:84–112

    Article  Google Scholar 

  43. Karimi M, Hillestad M, Svendsen HF (2011) Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chem Eng Res Des 89:1229–1236

    Article  Google Scholar 

  44. Karimi M, Hillestad M, Svendsen HF (2012) Investigation of the dynamic behavior of different stripper configurations for post-combustion CO2 capture. Int J Greenhouse Gas Control 7:230–239

    Article  Google Scholar 

  45. Cousins A, Wardhaugh L, Feron P (2011) Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Chem Eng Res Des 89:1237–1251

    Article  Google Scholar 

  46. Artanto Y, Jansen J, Pearson P, Puxty G, Cottrell A, Meuleman E, Feron P (2014) Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal-fired power station. Int J Greenhouse Gas Control 20:189–195

    Article  Google Scholar 

  47. Dash SK, Samanta AN, Bandyopadhyay SS (2014) Simulation and parametric study of the post combustion CO2 capture using aqueous 2-amino-2-methyl-1-propanol and piperazine. Int J Greenhouse Gas Control 21:130–139

    Article  Google Scholar 

  48. van der Spek M, Arendsen R, Ramirez A, Faaij A (2016) Model development and process simulation of postcombustion carbon capture technology with aqueous AMP/PZ solvent. Int J Greenhouse Gas Control 47:176–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta K. Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dash, S.K. (2017). Post-combustion Carbon Dioxide Capture with Aqueous (Piperazine + 2-Amino-2-Methyl-1-Propanol) Blended Solvent: Performance Evaluation and Analysis of Energy Requirements. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics