Skip to main content

Ionic Liquids: Advanced Solvents for CO2 Capture

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

As one of promising advanced solvents, ionic liquids (ILs) have become more attractive for CO2 capture due to their unique properties, special structures and potential energy saving efficiency. This chapter mainly reviews the research progress on CO2 capture with ILs, focusing on the CO2 absorption capacity of conventional ILs, task-specific ILs and ILs based mixtures as well as the comparison and analysis. The influence of cations, anions and functional groups of ILs on the CO2 absorption was analyzed and the mechanisms of physisorption and chemisorption were revealed using experimental test and molecular simulation results. Especially considering the real applications of the new ILs-based capture technologies, the research on process simulation and assessment of CO2 capture processes was also reviewed. Finally, we discussed the challenges and opportunities of transferring the lab-scale research results to practical industries processes, and also present some perspectives of ILs based novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Service RF (2004) Choosing a CO2 separation technology. Science 305(5686):963

    Article  Google Scholar 

  2. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M (2013) Review of recent advances in carbon dioxide separation and capture. Rsc Adv 3(45):22739–22773

    Article  Google Scholar 

  3. Huang K, Zhang X-M, Xu Y, Wu Y-T, Hu X-B, Xu Y (2014) Protic ionic liquids for the selective absorption of H2S from CO2: thermodynamic analysis. AIChE J 60(12):4232–4240

    Article  Google Scholar 

  4. Pinto AM, Rodriguez H, Colon YJ, Arce A Jr, Arce A, Soto A (2013) Absorption of carbon dioxide in two binary mixtures of ionic liquids. Ind Eng Chem Res 52(17):5975–5984

    Article  Google Scholar 

  5. Sharma P, Park SD, Baek IH, Park KT, Yoon YI, Jeong SK (2012) Effects of anions on absorption capacity of carbon dioxide in acid functionalized ionic liquids. Fuel Process Technol 100:55–62

    Article  Google Scholar 

  6. Shiflett MB, Drew DW, Cantini RA, Yokozeki A (2010) Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy Fuels 24:5781–5789

    Article  Google Scholar 

  7. Huang Y, Zhang X, Zhang X, Dong H, Zhang S (2014) Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes. Ind Eng Chem Res 53(29):11805–11817

    Article  Google Scholar 

  8. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29

    Article  Google Scholar 

  9. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5(5):6668–6681

    Article  Google Scholar 

  10. Zhao Y, Zhang X, Zhen Y, Dong H, Zhao G, Zeng S, Tian X, Zhang S (2011) Novel alcamines ionic liquids based solvents: Preparation, characterization and applications in carbon dioxide capture. Int J Greenhouse Gas Control 5(2):367–373

    Article  Google Scholar 

  11. Wappel D, Gronald G, Kalb R, Draxler J (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenhouse Gas Control 4(3):486–494

    Article  Google Scholar 

  12. Vega LF, Vilaseca O, Llovell F, Andreu JS (2010) Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives. Fluid Phase Equilib 294(1–2):15–30

    Article  Google Scholar 

  13. Kazarian SG, Briscoe BJ, Welton T (2000) Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun 20:2047–2048

    Article  Google Scholar 

  14. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Physical Chemistry Chemical Physics 3(23):5192–5200

    Article  Google Scholar 

  15. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 5(13):2790–2794

    Article  Google Scholar 

  16. Dong K, Zhang S, Wang D, Yao X (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110(31):9775–9782

    Article  Google Scholar 

  17. Yu G, Zhang S (2007) Insight into the cation-anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid. Fluid Phase Equilib 255(1):86–92

    Article  Google Scholar 

  18. Zhang J, Zhang S, Dong K, Zhang Y, Shen Y, Lv X (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J 12(15):4021–4026

    Article  Google Scholar 

  19. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X (2009) Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem Eur J 15(12):3003–3011

    Article  Google Scholar 

  20. Xue Z, Zhang Z, Han J, Chen Y, Mu T (2011) Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. Int J Greenhouse Gas Control 5(4):628–633

    Article  Google Scholar 

  21. Liu X, Zhou G, Zhang S, Yao X (2009) Molecular dynamics simulation of dual amino-functionalized imidazolium-based ionic liquids. Fluid Phase Equilib 284(1):44–49

    Article  Google Scholar 

  22. Wang C, Luo H, D-e Jiang, Li H, Dai S (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angewandte Chemie-International Edition 49(34):5978–5981

    Article  Google Scholar 

  23. Zhang J, Jia C, Dong H, Wang J, Zhang X, Zhang S (2013) A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture. Ind Eng Chem Res 52(17):5835–5841

    Article  Google Scholar 

  24. Gurkan B, Goodrich BF, Mindrup EM, Ficke LE, Massel M, Seo S, Senftle TP, Wu H, Glaser MF, Shah JK, Maginn EJ, Brennecke JF, Schneider WF (2010) Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture. J Phys Chem Lett 1(24):3494–3499

    Article  Google Scholar 

  25. Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind Eng Chem Res 47(18):7005–7012

    Article  Google Scholar 

  26. Blanchard LA, Gu ZY, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105(12):2437–2444

    Article  Google Scholar 

  27. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16):5300–5308

    Article  Google Scholar 

  28. Huang XH, Margulis CJ, Li YH, Berne BJ (2005) Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in bmim+pf6. J Am Chem Soc 127(50):17842–17851

    Article  Google Scholar 

  29. Almantariotis D, Gefflaut T, Padua AAH, Coxam JY, Gomes MFC (2010) Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids. J Phys Chem B 114(10):3608–3617

    Article  Google Scholar 

  30. Aki S, Mellein BR, Saurer EM, Brennecke JF (2004) High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B 108(52):20355–20365

    Article  Google Scholar 

  31. Yunus NM, Mutalib MIA, Man Z, Bustam MA, Murugesan T (2012) Solubility of CO2 in pyridinium based ionic liquids. Chem Eng J 189:94–100

    Article  Google Scholar 

  32. Bara JE, Gabriel CJ, Lessmann S, Carlisle TK, Finotello A, Gin DL, Noble RD (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386

    Article  Google Scholar 

  33. Makino T, Kanakubo M, Umecky T (2014) CO2 solubilities in ammonium bis(trifluoromethanesulfonyl)amide ionic liquids: Effects of ester and ether groups. J Chem Eng Data 59(5):1435–1440

    Article  Google Scholar 

  34. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374

    Article  Google Scholar 

  35. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111(30):9001–9009

    Article  Google Scholar 

  36. Zhang X, Liu Z, Wang W (2008) Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE J 54(10):2717–2728

    Article  Google Scholar 

  37. Bhargava BL, Balasubramanian S (2007) Probing anion-carbon dioxide interactions in room temperature ionic liquids: gas phase cluster calculations. Chem Phys Lett 444(4–6):242–246

    Article  Google Scholar 

  38. Seki T, Grunwaldt J-D, Baiker A (2009) In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under “supercritical” CO2. J Phys Chem B 113(1):114–122

    Article  Google Scholar 

  39. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  Google Scholar 

  40. Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117

    Article  Google Scholar 

  41. Zhang SJ, Yuan XL, Chen YH, Zhang XP (2005) Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures. J Chem Eng Data 50(5):1582–1585

    Article  Google Scholar 

  42. Yu G, Zhang S, Zhou G, Liu X, Chen X (2007) Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation. AIChE J 53(12):3210–3221

    Article  Google Scholar 

  43. Zhang SJ, Chen YH, Li FW, Lu XM, Dai WB, Mori R (2006) Fixation and conversion of CO2 using ionic liquids. Catal Today 115(1–4):61–69

    Article  Google Scholar 

  44. Wang C, Mahurin SM, Luo H, Baker GA, Li H, Dai S (2010) Reversible and robust CO2 capture by equimolar task-specific ionic liquid-superbase mixtures. Green Chem 12(5):870–874

    Article  Google Scholar 

  45. Wang C, Luo X, Luo H, D-e Jiang, Li H, Dai S (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angewandte Chemie-Intl Ed 50(21):4918–4922

    Article  Google Scholar 

  46. Wang C, Luo H, Li H, Zhu X, Yu B, Dai S (2012) Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion. Chem Eur J 18(7):2153–2160

    Article  Google Scholar 

  47. Luo X, Guo Y, Ding F, Zhao H, Cui G, Li H, Wang C (2014) Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. Angewandte Chemie-Intl Ed 53(27):7053–7057

    Article  Google Scholar 

  48. Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287

    Article  Google Scholar 

  49. Bermejo MD, Montero M, Saez E, Florusse LJ, Kotlewska AJ, Cocero MJ, van Rantwijk F, Peters CJ (2008) Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: Influence of water on the phase behavior. J Phys Chem B 112(43):13532–13541

    Article  Google Scholar 

  50. Ventura SPM, Pauly J, Daridon JL, da Silva JAL, Marrucho IM, Dias AMA, Coutinho JAP (2008) High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate plus water) systems. J Chem Thermodyn 40(8):1187–1192

    Article  Google Scholar 

  51. Wang GN, Hou WL, Xiao F, Geng JA, Wu YT, Zhang ZB (2011) Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption. J Chem Eng Data 56(4):1125–1133

    Article  Google Scholar 

  52. Seo S, Quiroz-Guzman M, DeSilva MA, Lee TB, Huang Y, Goodrich BF, Schneider WF, Brennecke JF (2014) Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO2 capture. J Phys Chem B 118(21):5740–5751

    Article  Google Scholar 

  53. Camper D, Bara JE, Gin DL, Noble RD (2008) Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 47(21):8496–8498

    Article  Google Scholar 

  54. Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and mdea. Chem Eng J 160(2):691–697

    Article  Google Scholar 

  55. Huang Q, Li Y, Jin XB, Zhao D, Chen GZ (2011) Chloride ion enhanced thermal stability of carbon dioxide captured by monoethanolamine in hydroxyl imidazolium based ionic liquids. Energy Environ Sci 4(6):2125–2133

    Article  Google Scholar 

  56. Xu F, Gao HS, Dong HF, Wang ZL, Zhang XP, Ren BZ, Zhang SJ (2014) Solubility of CO2 in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids. Fluid Phase Equilib 365:80–87

    Article  Google Scholar 

  57. Li XY, Hou MQ, Zhang ZF, Han BX, Yang GY, Wang XL, Zou LZ (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884

    Article  Google Scholar 

  58. Shiflett MB, Yokozeki A (2009) Phase behavior of carbon dioxide in ionic liquids: [emim][acetate], [emim][trifluoroacetate], and [emim][acetate] plus [emim][trifluoroacetate] mixtures. J Chem Eng Data 54(1):108–114

    Article  Google Scholar 

  59. Lei ZG, Han JL, Zhang BF, Li QS, Zhu JQ, Chen BH (2012) Solubility of CO2 in binary mixtures of room-temperature ionic liquids at high pressures. J Chem Eng Data 57(8):2153–2159

    Article  Google Scholar 

  60. Pinto AM, Rodriguez H, Arce A, Soto A (2014) Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. J Chem Thermodyn 77:197–205

    Article  Google Scholar 

  61. Goodrich BF, de la Fuente JC, Gurkan BE, Lopez ZK, Price EA, Huang Y, Brennecke JF (2011) Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J Phys Chem B 115(29):9140–9150

    Article  Google Scholar 

  62. Romanos GE, Zubeir LF, Likodimos V, Falaras P, Kroon MC, Iiev B, Adamova G, Schubert TJS (2013) Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water. J Phys Chem B 117(40):12234–12251

    Article  Google Scholar 

  63. Anderson K, Atkins MP, Estager J, Kuah Y, Ng S, Oliferenko AA, Plechkova NV, Puga AV, Seddon KR, Wassell DF (2015) Carbon dioxide uptake from natural gas by binary ionic liquid-water mixtures. Green Chem 17(8):4340–4354

    Article  Google Scholar 

  64. Ahmady A, Hashim MA, Aroua MK (2010) Experimental investigation on the solubility and initial rate of absorption of CO2 in aqueous mixtures of methyldiethanolamine with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 55(12):5733–5738

    Article  Google Scholar 

  65. Ahmady A, Hashim MA, Aroua MK (2011) Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib 309(1):76–82

    Article  Google Scholar 

  66. Gao Y, Zhang F, Huang K, Ma JW, Wu YT, Zhang ZB (2013) Absorption of CO2 in amino acid ionic liquid (AAIL) activated MDEA solutions. Int J Greenhouse Gas Control 19:379–386

    Article  Google Scholar 

  67. Zhang F, Gao Y, Wu XK, Ma JW, Wu YT, Zhang ZB (2013) Regeneration performance of amino acid ionic liquid (AAIL) activated mdea solutions for CO2 capture. Chem Eng J 223:371–378

    Article  Google Scholar 

  68. Sairi NA, Yusoff R, Alias Y, Aroua MK (2011) Solubilities of CO2 in aqueous N-methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic liquid systems at elevated pressures. Fluid Phase Equilib 300(1–2):89–94

    Article  Google Scholar 

  69. Yang J, Yu XH, Yan JY, Tu ST (2014) CO2 capture using amine solution mixed with ionic liquid. Ind Eng Chem Res 53(7):2790–2799

    Article  Google Scholar 

  70. Gao JB, Cao LD, Dong HF, Zhang XP, Zhang SJ (2015) Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: role of imidazolium-based ionic liquids. Appl Energy 154:771–780

    Article  Google Scholar 

  71. Hong G, Jacquemin J, Husson P, Gomes MFC, Deetlefs M, Nieuwenhuyzen M, Sheppard O, Hardacre C (2006) Effect of acetonitrile on the solubility of carbon dioxide in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide. Ind Eng Chem Res 45(24):8180–8188

    Article  Google Scholar 

  72. Ahn JY, Lee BC, Lim JS, Yoo KP, Kang JW (2010) High-pressure phase behavior of binary and ternary mixtures containing ionic liquid [C6mim][Tf2N], dimethyl carbonate and carbon dioxide. Fluid Phase Equilib 290(1–2):75–79

    Article  Google Scholar 

  73. Wang CM, Luo HM, Luo XY, Li HR, Dai S (2010) Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem 12(11):2019–2023

    Article  Google Scholar 

  74. Zhao YS, Zhang XP, Zeng SJ, Zhou Q, Dong HF, Tian XA, Zhang SJ (2010) Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine plus ionic liquid + H2O, ionic liquid + H2O, and amine + H2O systems. J Chem Eng Data 55(9):3513–3519

    Article  Google Scholar 

  75. Dai CN, Wei WJ, Lei ZG, Li CX, Chen BH (2015) Absorption of CO2 with methanol and ionic liquid mixture at low temperatures. Fluid Phase Equilib 391:9–17

    Article  Google Scholar 

  76. Lei ZG, Qi XX, Zhu JQ, Li QS, Chen BH (2012) Solubility of CO2 in acetone, 1-butyl-3-methylimidazolium tetrafluoroborate, and their mixtures. J Chem Eng Data 57(12):3458–3466

    Article  Google Scholar 

  77. Wang M, Zhang LQ, Gao LX, Pi KW, Zhang JY, Zheng CG (2013) Improvement of the CO2 absorption performance using ionic liquid [NH2emim][BF4] and [emim][BF4]/[bmim][BF4] mixtures. Energy Fuels 27(1):461–466

    Article  Google Scholar 

  78. Kumar S, Cho JH, Moon I (2014) Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—a review. Int J Greenhouse Gas Control 20:87–116

    Article  Google Scholar 

  79. Basha OM, Keller MJ, Luebke DR, Resnik KP, Morsi BI (2013) Development of a conceptual process for selective CO2 capture from fuel gas streams using [hmim][Tf2N] ionic liquid as a physical solvent. Energy Fuels 27(7):3905–3917

    Article  Google Scholar 

  80. Eisinger RS, Keller GE II (2014) Process for CO2 capture using ionic liquid that exhibits phase change. Energy Fuels 28(11):7070–7078

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21425625), the National Natural Science Foundation of China (No. 51574215, 21506219), the International S&T Cooperation Program of China (No. 2014DFA61670), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. l22111KYS820150017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, X., Bai, L., Zeng, S., Gao, H., Zhang, S., Fan, M. (2017). Ionic Liquids: Advanced Solvents for CO2 Capture. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics