Skip to main content

Aqueous Amino Acid Salts and Their Blends as Efficient Absorbents for CO2 Capture

  • Chapter
  • First Online:
Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The increase in global population and industrialization has led to an increase in global energy consumption exponentially. Over 85% of global energy is supplied by burning fossil fuel, which releases large volume of CO2 emissions in the atmosphere. Increasing of CO2 emissions is the major cause for the catastrophic climate change, which has led to increased demand for efficient and effective CO2 capture. CO2 absorption by chemical solvents is the most widely used technique commercially nowadays. Alkanolamine solvents such as monoethanolamine (MEA) and methyldiethanolamine (MDEA) are the most commonly used absorbents for CO2 removal from various gas streams. However, it is well known that these solvents suffer from variety of drawbacks such as limited CO2 loading capacity, equipment corrosion, toxic nature and highly volatile. Moreover, these absorbents are easily degradable, require high regeneration energy, and cause flooding problems in the operation. Therefore, better and efficient solvents should be searched for the removal of CO2 from exhaust gas streams. Aqueous amino acid salts and their blends are the promising solvents for CO2 capture as compared to alkanolamine. In this chapter, amino acid salts and their blends are introduced and their performance analysis as potential solvents for commercial possibilities are discussed. Based on the analysis, these absorbents show superior performance as an alternative to the conventional alkanolamines for CO2 capture. These solvents are environmental friendly with higher CO2 loading capacity, faster reaction kinetics and require less regeneration energy compares to the commercial amines. Besides, these solvents are non-volatile, less corrosive and oxidative stable. Moreover, aqueous amino acid salts are more effective by blending with additives such as piperazine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

%wt.:

Percent by weight

AAAS:

Aqueous amine amino acid salt

AAS:

Amino acid salt

ALA:

Alanine

AMP:

2-amino-2-methyl-1-propanol

ARG:

Arginine

ARG:

Arginine

ASN:

Asparagine

ASP:

Aspartate

ASTM:

American society for testing and materials

CAPEX:

Capital expenditure

CASPER:

CO2 capture and sulfur precipitation for enhanced removal

CO2 :

Carbon dioxide

CYS:

Cysteine

DEA:

Diethanolamine

DGA:

Diglycolamine

DIPA:

Diisopropylamine

GHG:

Greenhouse gas

GLN:

Glutamine

GLU:

Glutamate

GLY:

Glycine

H2S:

Hydrogen sulfide

HIS:

Histidine

ILU:

Isoleucine

K-AABA:

Potassium salt of DL-α-amino butyric acid

K-ALA:

Potassium salt of alanine

K-ASN:

Potassium salt of L-asparagine/asparaginate

K-BALA:

Potassium salt of β-alanine

K-DiMGLY:

Potassium salt of diethyl or dimethylglycine

K-GLU:

Potassium salt of glutamate

K-GLY:

Potassium salt of glycine

K-LYS:

Potassium salt of lysine

kPa:

Kilo pascal

K-PRO:

Potassium salt of proline

K-SAR:

Potassium salt of sarcosine

K-SER:

Potassium salt of serine

K-TAU:

Potassium salt of taurine

K-THR:

Potassium salt of threonine

LEU:

Leucine

Li-PRO:

Lithium salt of proline

Li-SAR:

Lithium salt of sarcosine

LYS:

Lysine

MDEA:

N-methyldiethanolamine

MEA:

Monoethanolamine

MET:

Methionine

MET:

Methionine

Na-ALA:

Sodium salt of alanine

NA-BALA:

Sodium salt of β-alanine

Na-GLY:

Sodium salt of glycine

Na-PH:

Sodium phenolate

Na-PRO:

Sodium salt of proline

Na-SAR:

Sodium salt of sarcosine

Na-SO3 :

Sodium sulfite

Na-TAU:

Sodium salt of taurine

Na-VO3 :

Sodium metavanadate

NH3 :

Ammonia

NOAA:

National Oceanographic and Atmospheric Administration

OPEX:

Operating expenditure

pH:

Power of hydrogen ion

PHE:

Phenylalanine

PostCap:

Post combustion capture technology

ppm:

Parts per million

PRO:

Proline

PZ:

Piperazine

SARMAPA:

Sarcosine with 3-(methylamino propylamine)

SER:

Serine

SO2 :

Sulphur dioxide

TEA:

Triethanolamine

THR:

Threonine

TIPA:

Tri-isopropanolamine

TRP:

Tryptophan

TYR:

Tyrosine

VAL:

Valine

VLE:

Vapor liquid equilibrium

Ea :

Activation energy (Kg/mol)

k 2 :

Forward second order reaction rate (m3 mol-1S-1)

k ov :

Overall reaction rate constant (S-1)

LD50 :

Lethal dose (mg/Kg)

M:

Molarity (mol/litre)

T:

Temperature (K/°C)

α :

Loading (mol/mol)

References

  1. Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenhouse Gas Control 1(2):135–142

    Article  Google Scholar 

  2. Dongwoo K, Sangwon P, Hoyong J, Jaehong M, Jinwon P (2013) Solubility of CO2 in amino-acid-based solutions of (potassium sarcosinate), (potassium alaninate + piperazine), and (potassium serinate + piperazine). J Chem Eng Data 58(6):1787–1791

    Article  Google Scholar 

  3. Yang HQ, Xu ZH, Fan MH, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Article  Google Scholar 

  4. NOAA (2014) Recent global monthly mean CO2. National Oceanographic and Atmospheric Administration: (NOAA). Silver Springs, MD

    Google Scholar 

  5. Williams M (2002) Climate change: information kit. United Nations Environment Programme (UNEP) and the United Nations Framework Convention on Climate Change (UNFCCC), Geneva

    Google Scholar 

  6. IPPC (Intergovernmental Panel on Climate Change) (2007) IPCC Report. IPCC, Geneva

    Google Scholar 

  7. Rubin ES, Rao AB (2002) A technical, economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475

    Article  Google Scholar 

  8. Khan FM, Krishnamoorthi V, Mahmud T (2011) Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications. Chem Eng Res Des 89(9):1600–1608

    Article  Google Scholar 

  9. Shaikh MS, Shariff AM, Bustam MA, Murshid G (2015) Measurement and prediction of physical properties of aqueous sodium L-prolinate and piperazine as a solvent for CO2 removal. Chem Eng Res Des 102:378–388

    Article  Google Scholar 

  10. Lucquiaud M, Gibbins J (2011) On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimize solvent-based post-combustion capture systems. Chem Eng Res Des 89(9):1553–1571

    Article  Google Scholar 

  11. Mores P, Scenna N, Mussati S (2011) Post-combustion CO2 capture process: equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. Chem Eng Res Des 89(9):1587–1599

    Article  Google Scholar 

  12. Diamantonis NI, Boulougouris GC, Tsangaris DM, Kadi MJE, Saadawi H, Negahban S, Economou IG (2013) Thermodynamic and transport property models for carbon capture and sequestration (CCS) processes with emphasis on CO2 transport. Chem Eng Res Des 91(10):1793–1806

    Article  Google Scholar 

  13. Posch S, Haider M (2013) Dynamic modeling of CO2 absorption from coal-fired power plants into an aqueous monoethanolamine solution. Chem Eng Res Des 91(6):977–987

    Article  Google Scholar 

  14. Sofia D, Coca Llano P, Giuliano A, Iborra Hernández M, García Peña F, Barletta D (2014) Co-gasification of coal-petcoke and biomass in the puertollano IGCC power plant. Chem Eng Res Des 92(8):1428–1440

    Article  Google Scholar 

  15. Kohl AL, Nielsen R (1997) Gas Purification, 5th edn. Gulf Publishing Company, Houston

    Google Scholar 

  16. Hoff KA, Juliussen O, Falk-Pedersen O, Svendsen HF (2004) Modeling and experimental study of carbon dioxide absorption in aqueous alkanoamines solutions using a membrane contactor. Ind Eng Chem Res 43(16):4908–4921

    Article  Google Scholar 

  17. Rochelle GT (2009) Amine scrubbing of CO2 capture. Science 325:1652–1654

    Article  Google Scholar 

  18. Moioli S, Pellegrini LA (2013) Regeneration section of CO2 capture plant by MEA scrubbing with a rate-based model. Chem Eng Trans 32:1849–1854

    Google Scholar 

  19. Lepaumier H, Picq D, Carrette PL (2009) New amines for CO2 capture: II. Oxidative degradation mechanisms. Ind Eng Chem Res 48(20):9068–9075

    Article  Google Scholar 

  20. Shaikh MS, Shariff AM, Bustam MA, Murshid G (2014) Physicochemical properties of aqueous solutions of sodium l-prolinate as an absorbent for CO2 removal. J Chem Eng Data 59(2):362–368

    Article  Google Scholar 

  21. Dawodu OF, Meisen A (1996) Degradation of alkanoamines blends by carbon dioxide. Can J Chem Eng 74(12):960–966

    Article  Google Scholar 

  22. Jamal A, Meisen A (2001) Kinetics of CO2 induced degradation of aqueous diethanolamine. Chem Eng Sci 56(23):6743–6760

    Article  Google Scholar 

  23. Portugal AF, Sousa JM, Magalhaẽs FD, Mendes A (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem Eng Sci 64(9):1993–2002

    Article  Google Scholar 

  24. Aronu UE, Hartono A, Svendsen HF (2011) Kinetics of carbon dioxide absorption into aqueous amine amino acid salt:3-(methylamino) propylamine/sarcosine solution. Chem Eng Sci 66(23):6109–6119

    Article  Google Scholar 

  25. Shuaib Shaikh M, Shariff AM, Bustam MA, Murshid G (2014) Physical properties of aqueous solutions of potassium carbonate + glycine as a solvent for carbon dioxide removal. J Serb Chem Soc 79(6):719–727

    Article  Google Scholar 

  26. Shaikh MS, Shariff AM, Bustam MA, Murshid G (2015) Physicochemical properties of aqueous solutions of sodium glycinate in the non-precipitation regime from 298.15 to 343.15 K. Chin J Chem Eng 23(3):536–540

    Article  Google Scholar 

  27. Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36(5):1779–1790

    Article  Google Scholar 

  28. Simons K, Brilman WDWF, Mengers H, Nijmeijer K, Wessling M (2010) Kinetics of CO2 absorption in aqueous sarcosine salt solutions: influence of concentration, temperature, and CO2 loading. Ind Eng Chem Res 49(20):9693–9702

    Article  Google Scholar 

  29. Hartono A, Aronu UE, Svendsen HF (2011) Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR. Energy Procedia 4:209–215

    Article  Google Scholar 

  30. Song H-J, Sangwon P, Hyuntae K, Ankur G, Park J-W, Lee S-J (2012) Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int J Greenhouse Gas Control 11:64–72

    Article  Google Scholar 

  31. Shaikh MS, Shariff AM, Bustam MA, Murshid G (2013) Physical properties of aqueous blends of sodium glycinate (SG) and piperazine (PZ) as a solvent for CO2 capture. J Chem Eng Data 58(3):634–638

    Article  Google Scholar 

  32. Majchrowicz ME (2014) Amino acid salt solutions for carbon dioxide capture. Ph.D. dissertation, University of Twente, The Netherlands

    Google Scholar 

  33. Goan JC, Miller RR, Piatt VR. (1960) Alkazid M as a Regenerative Carbon Dioxide Absorbent. NRL Report 5465. Naval Research Laboratory, Washington DC

    Google Scholar 

  34. Holst JV, Versteeg GF, Brilman DWF, Hogendoorn JA (2009) Kinetic study of CO2 with various amino acid salts in aqueous solution. Chem Eng Sci 64(1):59–68

    Article  Google Scholar 

  35. Nuchitprasittichai A, Cremaschi S (2011) Optimization of CO2 capture process with aqueous amines using response surface methodology. Comput Chem Eng 35(8):1521–1531

    Article  Google Scholar 

  36. Caplow M (1980) Kinetics of carbamate formation and breakdown. J Am Chem Soc 90(24):6795–6803

    Article  Google Scholar 

  37. Ewing SP, Lockshon D, Jencks WP (1980) Mechanism of cleavage of carbamate anions. J Am Chem Soc 102(9):3072–3084

    Article  Google Scholar 

  38. Chakraborty AK, Bischoff KB, Astarita G, Damewood JR (1988) Molecular orbital approach to substituent effects in amine-CO2 interactions. J Am Chem Soc 110(21):6947–6954

    Google Scholar 

  39. Lerche BM (2012) CO2 capture from flue gas using amino acid salt solutions. Ph.D. thesis, Technical University of Denmark

    Google Scholar 

  40. Gabrielsen J (2007) CO2 capture from coal fired power plants, IVCSEP. Ph.D. thesis, Technical University of Denmark

    Google Scholar 

  41. Da Silva EF (2005) Computational chemistry study of solvents for carbon dioxide absorption. Ph.D. Thesis, Norwegian University of Science and Technology, NO-7491, Trondheim

    Google Scholar 

  42. Darde V (2011) CO2 capture using aqueous ammonia. Ph.D. Thesis, Technical University of Denmark, Frydenberg, Copenhagen

    Google Scholar 

  43. Feron PHM, Asbroek NAM. (2004) New solvents based on amino-acid salts for CO2 capture from flue gases. GHGT-7, Vancouver, Canada

    Google Scholar 

  44. Goetheer ELV, Nell L (2009) First pilot plant results from TNO’s solvent development workflow. Carbon Capture J 8:2–3

    Google Scholar 

  45. Schneider R, Schramm H (2011) Environmental friendly and economic carbon capture from power plant flue gases: The SIEMENS PostCap technology. First Post Combustion Capture Conference, Abu Dhabi

    Google Scholar 

  46. Fernandez ES, Goetheer ELV (2011) DECAB process development of a phase change absorption process. Energy Procedia 4:868–875

    Article  Google Scholar 

  47. Kumar PS, Hogendoorn JA, Timmer JS, Feron PHM (2003) Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 2. Experimental VLE data and model. Ind Eng Chem Res 42(12):2841–2852

    Google Scholar 

  48. Sanchez Fernandez E, Heffernan K, van der Ham L, Linders MJG, Eggink E, Schrama FNH, Brilman DWF, Goetheer ELV, Vlugt TJH (2013) Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents. Ind Eng Chem Res 52(34):12223–12235

    Article  Google Scholar 

  49. Misiak K, Sanchez Sanchez C, van Os P, Goetheer E (2013) Next generation post-combustion capture: combined CO2 and SO2 removal. Energy Procedia 37:1150–1159

    Article  Google Scholar 

  50. Song H-J, Lee S, Maken S, Park JJ, Park JW (2006) Solubilities of carbon dioxide in aqueous solutions of sodium glycinate. Fluid Phase Equilib 246(1–2):1–5

    Article  Google Scholar 

  51. Harris F, Kurnia KA, Mutalib MIA, Murugesan T (2009) Solubilites of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption. J Chem Eng Data 54(1):144–147

    Article  Google Scholar 

  52. Zhang W, Wang Q, Fang M, Luo Z (2010) Experimental Study on CO2 absorption and regeneration of aqueous solutions of potassium glycinate. 978-1-4244-4713-8/10/$25.00 ©2010 IEEE

    Google Scholar 

  53. Aronu UE, Hoff KA, Svendsen HF (2011) Vapor–liquid equilibrium in aqueous amine amino acids salt solution: 3-(methylamino) propylamine/sarcosine. Chem Eng Sci 66(17):3859–3867

    Article  Google Scholar 

  54. Song HJ, Lee MG, Kim H, Gaur A, Park JW (2011) Density, viscosity, heat capacity, surface tension, and solubility of CO2 in aqueous solutions of potassium serinate. J Chem Eng Data 56(4):1371–1377

    Article  Google Scholar 

  55. Lee JI, Otto FD, Mather AE (1974) The solubility of H2S and CO2 in aqueous monoethanolamine solutions. Can J Chem Eng 52(6):803–805

    Article  Google Scholar 

  56. Jou FY, Mather AE, Otto FD (1982) Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Ind Eng Chem Process Design Develop 21(4):539–544

    Article  Google Scholar 

  57. Lim J, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC (2012) Absorption of CO2 into aqueous potassium salt solutions of L-alanine and L-proline. Energy Fuels 26(6):3910–3918

    Article  Google Scholar 

  58. Majchrowicz ME, Brilman DWF (2012) Solubility of CO2 in aqueous potassium L-prolinate solutions-absorber conditions. Chem Eng Sci 72:35–44

    Article  Google Scholar 

  59. Kang D, Park S, Jo H, Min J, Park J (2013) Solubility of CO2 in Amino-Acid-Based Solutions of (potassium sarcosinate), (potassium alaninate + piperazine), and (potassium serinate + piperazine). J Chem Eng Data 58(6):1787–1791

    Article  Google Scholar 

  60. Aldenkamp N, Huttenhuis P, Penders-van Elk N, Hamborg ES, Versteeg GF (2014) Solubility of carbon dioxide in aqueous potassium salts of glycine and taurine at absorber and desorber conditions. J Chem Eng Data 59(11):3397–3406

    Article  Google Scholar 

  61. Chang YT, Leron RB, Li MH (2015) Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-a-aminobutyric acid at high pressures. J Chem Thermodyn 83:110–116

    Article  Google Scholar 

  62. Mazinani S, Ramazani R, Samsami A, Jahanmiri A, Bruggen BV, Darvishmanesh S (2015) Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution. Fluid Phase Equilib 396:28–34

    Article  Google Scholar 

  63. Shen S, Yang Y, Wang Y, Ren S, Han J, Chen A (2015) CO2 absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of CO2. Fluid Phase Equilib 399:40–49

    Article  Google Scholar 

  64. Chen ZW, Leron RB, Li MH (2015) Equilibrium solubility of carbon dioxide in aqueous potassium L-asparaginate and potassium L-glutaminate solutions. Fluid Phase Equilib 400:20–26

    Article  Google Scholar 

  65. Mazinani S, Samsami A, Jahanmiri A (2011) Solubility (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG). J Chem Eng Data 56(7):3163–3168

    Article  Google Scholar 

  66. Privalova E, Rasi S, Maki-Arvela P, Eranen K, Rintala J, Murzin DY, Mikkola JP (2013) CO2 capture from biogas: absorbent selection. RSC Advances 3:2979–2994

    Article  Google Scholar 

  67. Lu JG, Fan F, Lui C, Ji Y, Zhang H (2011) Performance evaluation of amino acid salt-based complex absorbents for CO2 capture. Environ Eng Manage J 10(2):297–304

    Google Scholar 

  68. Park S, Song HJ, Park J (2014) Selection of suitable aqueous potassium amino acid salts: CH4 recovery in coal bed methane via CO2 removal. Fuel Process Technol 120:48–53

    Article  Google Scholar 

  69. Kumar PS, Hogendoorn JA, Versteeg GF (2003) Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine. AIChE J 49(1):203–213

    Article  Google Scholar 

  70. Versteeg GF, Van Dijck LAJ, Van Swaaij WPM (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions: an overview. Chem Eng Commun 144(1):113–158

    Article  Google Scholar 

  71. Lee S, Song HJ, Maken S, Park JW (2007) Kinetics of CO2 absorption in aqueous sodium glycinate solutions. Ind Eng Chem Res 46(5):1578–1583

    Article  Google Scholar 

  72. Portugal AF, Derks PWJ, Versteeg GF, Magalhãesa FD, Mendesa A (2007) Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem Eng Sci 62(23):6534–6547

    Article  Google Scholar 

  73. Glasscock DA, Critchfield JE, Rochelle GT (1991) CO2 absorption desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. Chem Eng Sci 46(11):2829–2845

    Article  Google Scholar 

  74. Portugal AF, Magalhães FD, Mendes A (2008) Carbon dioxide absorption kinetics in potassium threonate. Chem Eng Sci 63(13):3493–3503

    Article  Google Scholar 

  75. Holst JV, Versteeg GF, Brilman DWF, Hogendoorn JA (2009) Kinetic study of CO2 with various amino acid salts in aqueous solution. Chem Eng Sci 64(1):59–68

    Article  Google Scholar 

  76. Simons K, Brilman WDWF, Mengers H, Nijmeijer K, Wessling M (2010) Kinetics of CO2 absorption in aqueous sarcosine salt solutions: influence of concentration, temperature, and CO2 loading. Ind Eng Chem Res 49(20):9693–9702

    Article  Google Scholar 

  77. Vaidya PD, Konduru P, Vaidyanathan M (2010) Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts. Ind Eng Chem Res 49(21):11067–11072

    Article  Google Scholar 

  78. Aronu UE, Hartono A, Hoff KA, Svendsen HF (2011) Kinetics of carbon dioxide absorption into aqueous amino acid salt: potassium salt of sarcosine solution. Ind Eng Chem Res 50(18):10465–10475

    Article  Google Scholar 

  79. Kim M, Song HJ, Lee MG, Jo HY, Park JW (2012) Kinetics and steric hindrance effects of carbon dioxide absorption into aqueous potassium alaninate solutions. Ind Eng Chem Res 51(6):2570–2577

    Article  Google Scholar 

  80. Paul S, Thomsen K (2012) Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline. Int J Greenhouse Gas Control 8:169–179

    Article  Google Scholar 

  81. Majchrowicz ME, Kersten S, Brilman W (2014) Reactive absorption of carbon dioxide in L-prolinate salt solutions. Ind Eng Chem Res 53(28):11460–11467

    Article  Google Scholar 

  82. Guo D, Thee H, Tan CY, Chen J, Fei W, Kentish S, Stevens GW, Da Silva G (2013) Amino acids as carbon capture solvents: chemical kinetics and mechanism of the glycine + CO2 reaction. Energy Fuels 27(7):3898–3904

    Article  Google Scholar 

  83. Sodiq A, Rayer AV, Olanrewaju AA, Abu-Zahra MRM (2014) Reaction kinetics of carbon dioxide (CO2) absorption in sodium salts of taurine and proline using a stopped-flow technique. Int J Chem Kinet 46:730–745

    Article  Google Scholar 

  84. Fang M, Zhou X, Xiang Q, Cai D, Luo Z (2015) Kinetics of CO2 absorption in aqueous potassium L-prolinate solutions at elevated total pressure. Energy Procedia 75:2293–2298

    Article  Google Scholar 

  85. Hikita H, Asai S, Ishikawa H, Honda M (1977) The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method. Chem Eng J 13(1):7–12

    Article  Google Scholar 

  86. Rangwala HA, Morrell BR, Mather AE, Otto FD (1992) Absorption of CO2 into aqueous tertiary amine/MEA solutions. Can J Chem Eng 70(3):482–490

    Article  Google Scholar 

  87. Alpe E (1990) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide. Ind Eng Chem Res 29(8):1725–1728

    Article  Google Scholar 

  88. Bishnoi S, Rochelle GT (2002) Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AIChE J 48:2788–2799

    Article  Google Scholar 

  89. Littel R, Van Swaaij W, Versteeg G (1990) Kinetics of carbon dioxide with tertiary amines in aqueous solution. AIChE J 36:1633–1640

    Article  Google Scholar 

  90. Epp B, Hans F, Monika V (2011) Degradation of solutions of monoethanolamine, diglycolamine and potassium glycinate in view of tail-end CO2 absorption. Energy Procedia 4:75–80

    Article  Google Scholar 

  91. Huang Q, Saloni B, Joseph ER, John P, Selegue KL (2013) Thermal degradation of amino acid salts in CO2 capture. Int J Greenhouse Gas Control 19:243–250

    Article  Google Scholar 

  92. DuPart MS, Bacon TR, Edwards DJ (1993) Hydrocarbon Processing 72(5):89

    Google Scholar 

  93. Hawkes EN, Mago BF (1971) Hydrocarbon Process 50(8):109

    Google Scholar 

  94. Ahn S, Song HJ, Park JW, Lee JH, Lee IY, Jang KR (2010) Characterization of metal corrosion by aqueous amino acid salts for capture of CO2. Korean J Chem Eng 27(5):1576–1580

    Article  Google Scholar 

  95. Bello A, Idem RO (2006) Comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases. Ind Eng Chem Res 45(8):2569–2579

    Article  Google Scholar 

  96. Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Global Warming 7(2):184–225

    Article  Google Scholar 

  97. Shao R, Stangeland A (2009) Amines used in CO2 capture-health and environmental impacts. Bellona Report, September 2009

    Google Scholar 

  98. Glycine; MSDS Cat. code. SLG1972, SLG2191; [online]; Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396USA. http://www.sciencelab.com/msds.php?msdsId=9927179. Accessed 16 Dec 15

  99. L-proline; MSDS Cat code. SLP5488, SLP2662, SLP4471, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9927237. Accessed 16 Dec 15

  100. Taurine; MSDS Cat code. SLT2014, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9925166. Accessed 16 Dec 15

  101. L-Histidine; MSDS Cat code. SLH2317, SLH3163, SLH1843, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9927189. Accessed 16 Dec 15

  102. L-Methionine; MSDS Cat code. SLM1987, SLM3361, SLM1216, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9927225. Accessed 16 Dec 15

  103. L-Glutamine; MSDS Cat code. SLG1462, SLG1963, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9924160. Accessed 16 Dec 15

  104. Monoethanolamine; MSDS Cat code. SLA4792, SLA2452, SLA3955, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9922885. Accessed 16 Dec 15

  105. Diethanolamine; MSDS Cat code. SLD1834, SLD3199, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9923743. Accessed 16 Dec 15

  106. Triethanolamine; MSDS Cat code. SLT3841, SLT1822, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9927306. Accessed 16 Dec 15

  107. Piperazine; MSDS Cat code. SLP4681, Science Lab.Com, Inc 14025 Smith Road, Houston, Texas 77396 USA. http://www.sciencelab.com/msds.php?msdsId=9926575. Accessed 16 Dec 15

  108. Gabrielsen J (2007) CO2 capture from coal fired power plants, IVCSEP. Ph.D. Thesis, Technical University of Denmark

    Google Scholar 

  109. Jockenhoevel T, Schneider R, Rode H (2008) Development of an economic post-combustion carbon capture process, GHGT-9-Washington D.C, USA

    Google Scholar 

  110. Weiland RH, Hatcher NA, Nava JL (2010) Post-combustion CO2 capture with amino-acid salts, Optimized Gas Treating, Inc. Clarita, 74535, USA

    Google Scholar 

  111. Salazar V, Sanchez-Vincente Y, Pando C, Renuncio JAR, Cabanas A (2010) Enthalpies of absorption of carbon dioxide in aqueous sodium glycinate solutions at temperatures of (313.15 and 323.15) K. J Chem Eng Data 55(3):1215–1218

    Article  Google Scholar 

  112. Oexmann J, Kather A (2010) Minimizing the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents. Int J Greenhouse Gas Control 4(1):36–43

    Article  Google Scholar 

  113. Amino acids formulas and molecular weight. Accessed 19 Dec 15

    Google Scholar 

  114. Walum E (1998) Acute oral toxicity. Environ Health Perspect 106(2):497–503

    Google Scholar 

  115. Shen KP, Li MH (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data 37(1):96–100

    Article  Google Scholar 

  116. Tan LS, Shariff AM, Lau KK, Bustam MA (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18(6):1874–1883

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Research Centre for CO2 Capture (RCCO2C), Department of Chemical Engineering, Universiti Teknologi PETRONAS for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmi Mohd Shariff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shariff, A.M., Shaikh, M.S. (2017). Aqueous Amino Acid Salts and Their Blends as Efficient Absorbents for CO2 Capture. In: Budzianowski, W. (eds) Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47262-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47262-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47261-4

  • Online ISBN: 978-3-319-47262-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics