Using Temporal Signals

  • Leon R. A. DerczynskiEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 677)


In Chap.  4, we saw that a proportion of difficult temporal relations were associated with a particular separate word or phrase that described the temporal relation type – a temporal signal.


Temporal Relation Temporal Signal Signal Annotation Signal Discrimination Closed Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hitzeman, J.: Semantic partition and the ambiguity of sentences containing temporal adverbials. Nat. Lang. Seman. 5(2), 87–100 (1997)CrossRefGoogle Scholar
  2. 2.
    Ho-Dac, L., Péry-Woodley, M.: Temporal adverbials and discourse segmentation revisited. In: Multidisciplinary Approaches to Discourse (2008)Google Scholar
  3. 3.
    Bestgen, Y., Vonk, W.: Temporal adverbials as segmentation markers in discourse comprehension. J. Mem. Lang. 42(1), 74–87 (1999)CrossRefGoogle Scholar
  4. 4.
    Brée, D., Smit, R.: Temporal relations. J. Seman. 5(4), 345 (1986)CrossRefGoogle Scholar
  5. 5.
    Brée, D., Feddag, A., Pratt, I.: Towards a formalization of the semantics of some temporal prepositions. Time Soc. 2(2), 219 (1993)CrossRefGoogle Scholar
  6. 6.
    Schlüter, N.: Temporal specification of the present perfect: a corpus-based study. Lang. Comput. 36(1), 307–315 (2001)Google Scholar
  7. 7.
    Vlach, F.: Temporal adverbials, tenses and the perfect. Linguist. Philos. 16(3), 231–283 (1993)CrossRefGoogle Scholar
  8. 8.
    Hitzeman, J.: Text type and the position of a temporal adverbial within the sentence. In: Proceedings of the 2005 international conference on Annotating, extracting and reasoning about time and events, pp. 29–40. Springer (2005)Google Scholar
  9. 9.
    Derczynski, L., Gaizauskas, R.: A corpus-based study of temporal signals. In: Proceedings of the Corpus Linguistics conference (2011)Google Scholar
  10. 10.
    Setzer, A., Gaizauskas, R.: Annotating events and temporal information in newswire texts. In: Proceedings of the Second International Conference On Language Resources And Evaluation (LREC-2000), Athens, Greece, vol. 31 (2000)Google Scholar
  11. 11.
    Derczynski, L., Gaizauskas, R.: Analysing temporally annotated corpora with CAVaT. In: Proceedings of the Language Resources and Evaluation Conference, pp. 398–404 (2010)Google Scholar
  12. 12.
    Derczynski, L., Gaizauskas, R.: Using signals to improve automatic classification of temporal relations. In: Proceedings of the ESSLLI StuS (2010)Google Scholar
  13. 13.
    Derczynski, L., Gaizauskas, R.: Temporal signals help label temporal relations. In: Proceedings of the annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2013)Google Scholar
  14. 14.
    Mani, I., Verhagen, M., Wellner, B., Lee, C., Pustejovsky, J.: Machine learning of temporal relations. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, p. 760. Association for Computational Linguistics (2006)Google Scholar
  15. 15.
    Bethard, S., Martin, J., Klingenstein, S.: Timelines from text: identification of syntactic temporal relations. In: Proceedings of the International Conference on Semantic Computing, pp. 11–18 (2007)Google Scholar
  16. 16.
    Zipf, G.: The Psycho-biology of Language. Houghton-Mifflin, Boston (1935)Google Scholar
  17. 17.
    Quirk, R., Greenbaum, S., Leech, G., Svartvik, J., Crystal, D.: A Comprehensive Grammar of the English Language, vol. 1. Longman, New York (1985)Google Scholar
  18. 18.
    Dorr, B., Gaasterland, T.: Summarization-inspired temporal-relation extraction: tense-pair templates and treebank-3 analysis. Technical Report. CS-TR-4844, University of Maryland, College Park, MD, USA (2006)Google Scholar
  19. 19.
    Mani, I., Hitzeman, J., Richer, J., Harris, D., Quimby, R., Wellner, B.: SpatialML: annotation scheme, corpora, and tools. In: Proceedings of LREC, vol. 8 (2008)Google Scholar
  20. 20.
    Verhagen, M., Saurí, R., Caselli, T., Pustejovsky, J.: SemEval-2010 task 13: TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 57–62. Association for Computational Linguistics (2010)Google Scholar
  21. 21.
    Reichenbach, H.: The tenses of verbs. Elements of Symbolic Logic. Dover Publications, New York (1947)Google Scholar
  22. 22.
    Stevenson, M., Wilks, Y.: Word sense disambiguation. The Oxford Handbook of Computational Linguistics, pp. 249–265. Oxford University Press, Oxford (2005)Google Scholar
  23. 23.
    Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41(2), 1–69 (2009)CrossRefGoogle Scholar
  24. 24.
    Lapata, M., Lascarides, A.: Learning sentence-internal temporal relations. J. Artif. Intell. Res. 27(1), 85–117 (2006)zbMATHGoogle Scholar
  25. 25.
    Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the 1st North American chapter of the Association for Computational Linguistics conference, pp. 132–139. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
  26. 26.
    Kiss, T., Strunk, J.: Unsupervised multilingual sentence boundary detection. Comput. Linguist. 32(4), 485–525 (2006)CrossRefGoogle Scholar
  27. 27.
    Klein, D., Manning, C.: Fast exact inference with a factored model for natural language parsing. Adv. Neural Inf. Process. Syst. 15, 3–10 (2003)Google Scholar
  28. 28.
    Marcus, M., Kim, G., Marcinkiewicz, M., MacIntyre, R., Bies, A., Ferguson, M., Katz, K., Schasberger, B.: The Penn Treebank: annotating predicate argument structure. In: Proceedings of the workshop on Human Language Technology, pp. 114–119. Association for Computational Linguistics (1994)Google Scholar
  29. 29.
    Bies, A., Ferguson, M., Katz, K., MacIntyre, R., Tredinnick, V., Kim, G., Marcinkiewicz, M., Schasberger, B.: Bracketing guidelines for Treebank II style Penn Treebank project. University of Pennsylvania (1995)Google Scholar
  30. 30.
    Blaheta, D., Charniak, E.: Assigning function tags to parsed text. In: Proceedings of the 1st North American chapter of the Association for Computational Linguistics conference, p. 240. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
  31. 31.
    Musillo, G., Merlo, P.: Assigning function labels to unparsed text. In: Proceedings of RANLP’05 (2005)Google Scholar
  32. 32.
    Blaheta, D.: Function tagging. Ph.D. thesis, Department of Computer Science, Brown University (2004)Google Scholar
  33. 33.
    Gabbard, R., Marcus, M., Kulick, S.: Fully parsing the Penn Treebank. In: Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, pp. 184–191. Association for Computational Linguistics (2006)Google Scholar
  34. 34.
    Lintean, M., Rus, V.: Naive bayes and decision trees for function tagging. In: FLAIRS Conference, pp. 604–609 (2007)Google Scholar
  35. 35.
    Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus of English: The Penn Treebank. Comput. Linguist. 19(2), 330 (1993)Google Scholar
  36. 36.
    Quinlan, J.: C4. 5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  37. 37.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)Google Scholar
  39. 39.
    De Marneffe, M., MacCartney, B., Manning, C.: Generating typed dependency parses from phrase structure parses. In: Proceedings of the International Conference on Language Resources and Evaluation (2006)Google Scholar
  40. 40.
    Verhagen, M.: Times Between The Lines. Ph.D. thesis, Brandeis University (2004)Google Scholar
  41. 41.
    Kanhabua, N., Nørvåg, K.: Improving temporal language models for determining time of non-timestamped documents. In: Research and Advanced Technology for Digital Libraries, pp. 358–370. Springer (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations