Advertisement

Relation Labelling Analysis

  • Leon R. A. DerczynskiEmail author
Chapter
  • 449 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 677)

Abstract

In Chap.  3, we discovered that automatic temporal relation typing is a difficult problem. This motivates an investigation into potential ways of improving performance in relation typing. This chapter details an attempt to discover potential ways of improving performance at the task. As humans are readily able to identify the nature of temporal links, one may a priori draw the conclusion that the information required to do so must be available somewhere. This knowledge is in a given document or in information known by the reader before encountering that document (referred to as world knowledge).

Keywords

Temporal Relation Minimum Description Length World Knowledge Surface Information Relation Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boguraev, B., Pustejovsky, J., Ando, R., Verhagen, M.: TimeBank evolution as a community resource for TimeML parsing. Lang. Resour. Eval. 41(1), 91–115 (2007)CrossRefGoogle Scholar
  2. 2.
    Tissot, H., Roberts, A., Derczynski, L., Gorrell, G., Del Fabro, M.D.: Analysis of temporal expressions annotated in clinical notes. In: Proceedings 11th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-11), p. 93. Association for Computational Linguistics (2015)Google Scholar
  3. 3.
    Verhagen, M., Saurí, R., Caselli, T., Pustejovsky, J.: SemEval-2010 task 13: TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 57–62. Association for Computational Linguistics (2010)Google Scholar
  4. 4.
    Ha, E., Baikadi, A., Licata, C., Lester, J.: NCSU: modeling temporal relations with markov logic and lexical ontology. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval ’10, pp. 341–344. Association for Computational Linguistics (2010)Google Scholar
  5. 5.
    Derczynski, L., Gaizauskas, R.: USFD2: annotating temporal expressions and TLINKs for TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 337–340. Association for Computational Linguistics (2010)Google Scholar
  6. 6.
    UzZaman, N., Allen, J.: TRIPS and TRIOS system for TempEval-2: extracting temporal information from text. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 276–283. Association for Computational Linguistics (2010)Google Scholar
  7. 7.
    Llorens, H., Saquete, E., Navarro, B.: TIPSem (English and Spanish): evaluating CRFs and semantic roles in TempEval-2. In: Proceedings of SemEval-2010, pp. 284–291. ACL (2010)Google Scholar
  8. 8.
    Lee, C., Katz, G.: Error analysis of the TempEval temporal relation identification task. In: SEW-2009 Semantic Evaluations: Recent Achievements and Future Directions, pp. 138–145 (2009)Google Scholar
  9. 9.
    Diessel, H.: Iconicity of sequence: a corpus-based analysis of the positioning of temporal adverbial clauses in English. cognit. linguist. 19(3), 465–490 (2008)CrossRefGoogle Scholar
  10. 10.
    Harris, R., Brewer, W.: Deixis in memory for verb tense. J. Verbal Learn. Verbal Behav. 12(5), 590–597 (1973)CrossRefGoogle Scholar
  11. 11.
    Mani, I., Wellner, B., Verhagen, M., Pustejovsky, J.: Three approaches to learning TLINKS in TimeML. Technical Report. CS-07-268, Brandeis University, Waltham, MA, USA (2007)Google Scholar
  12. 12.
    Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)CrossRefzbMATHGoogle Scholar
  14. 14.
    Grünwald, P.: A minimum description length approach to grammar inference. Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing, pp. 203–216 (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations