Advertisement

Temporal Relations

  • Leon R. A. DerczynskiEmail author
Chapter
  • 462 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 677)

Abstract

Having discussed timex and events in the previous chapter, we move on to discuss the temporal relations that exist between them.

Keywords

Temporal Logic Temporal Relation Relation Typing Temporal Closure Relationship Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Setzer, A., Gaizauskas, R.: A pilot study on annotating temporal relations in text. In: Proceedings of the Workshop on Temporal and Spatial Information Processing, vol. 13, pp. 1–8. Association for Computational Linguistics (2001)Google Scholar
  2. 2.
    Setzer, A.: Temporal information in newswire articles: an annotation scheme and corpus study. Ph.D. thesis, The University of Sheffield (2001)Google Scholar
  3. 3.
    Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans. Asian Lang. Inf. Process. (TALIP) 3(1), 66–85 (2004)CrossRefGoogle Scholar
  5. 5.
    Prior, A.: Tense logic and the logic of earlier and later. Papers on Time and Tense, pp. 116–134 (1968)Google Scholar
  6. 6.
    Bruce, B.: A model for temporal references and its application in a question answering program. Artif. Intell. 3(1–3), 1–25 (1972)CrossRefGoogle Scholar
  7. 7.
    Moens, M., Steedman, M.: Temporal ontology and temporal reference. Comput. Linguist. 14(2), 15–28 (1988)Google Scholar
  8. 8.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. J. Appl. Nonclassical Log. 14(1/2), 9–54 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Denis, P., Muller, P.: Comparison of different algebras for inducing the temporal structure of texts. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 250–258. Association for Computational Linguistics (2010)Google Scholar
  10. 10.
    Setzer, A., Gaizauskas, R., Hepple, M.: The role of inference in the temporal annotation and analysis of text. Lang. Res. Eval. 39(2), 243–265 (2005)CrossRefGoogle Scholar
  11. 11.
    McDermott, D.: A temporal logic for reasoning about plans and actions. Cogn. Sci. 6, 101–155 (1982)CrossRefGoogle Scholar
  12. 12.
    Galton, A.: Temporal logic. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, The Metaphysics Research Lab (2008)Google Scholar
  13. 13.
    Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 377–382 (1986)Google Scholar
  14. 14.
    Tsang, E.: The consistent labeling problem in temporal reasoning. In: Proceedings of the AAAI Conference, pp. 251–255. AAAI Press (1987)Google Scholar
  15. 15.
    Allen, J.F., Hayes, P.J.: Moments and points in an interval-based temporal logic. Comput. Intell. 5(3), 225–238 (1989)CrossRefGoogle Scholar
  16. 16.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54(1), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Foundations Of Knowledge Base Management, pp. 23–55. Springer, Heidelberg (1989)Google Scholar
  18. 18.
    Verhagen, M.: Times Between The Lines. Ph.D. thesis, Brandeis University (2004)Google Scholar
  19. 19.
    Derczynski, L., Gaizauskas, R.: Analysing temporally annotated corpora with CAVaT. In: Proceedings of the Language Resources and Evaluation Conference, pp. 398–404 (2010)Google Scholar
  20. 20.
    Denis, P., Muller, P.: Predicting globally-coherent temporal structures from texts via endpoint inference and graph decomposition. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (2011)Google Scholar
  21. 21.
    Mani, I., Verhagen, M., Wellner, B., Lee, C., Pustejovsky, J.: Machine learning of temporal relations. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, p. 760. Association for Computational Linguistics (2006)Google Scholar
  22. 22.
    Pustejovsky, J.: Personal correspondence (2009)Google Scholar
  23. 23.
    Setzer, A., Gaizauskas, R.: Annotating events and temporal information in newswire texts. In: Proceedings of the Second International Conference On Language Resources And Evaluation (LREC-2000), vol. 31, Athens, Greece (2000)Google Scholar
  24. 24.
    Mani, I., Wellner, B., Verhagen, M., Pustejovsky, J.: Three approaches to learning TLINKS in Time ML. Technical Report CS-07-268, Brandeis University, Waltham, MA, USA (2007)Google Scholar
  25. 25.
    Pustejovsky, J., Stubbs, A.: Natural language annotation for machine learning. O’Reilly Media, Inc. (2012)Google Scholar
  26. 26.
    Verhagen, M.: Temporal closure in an annotation environment. Lang. Res. Eval. 39(2), 211–241 (2005)CrossRefGoogle Scholar
  27. 27.
    Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations. Proc. EMNLP 4, 33–40 (2004)Google Scholar
  28. 28.
    Chklovski, T., Pantel, P.: Path Analysis for Refining Verb Relations. In: Proceedings of KDD Workshop on Link Analysis and Group Detection (LinkKDD-04) (2004)Google Scholar
  29. 29.
    Lin, D., Pantel, P.: Discovery of inference rules for question-answering. Natural Lang. Eng. 7(04), 343–360 (2002)Google Scholar
  30. 30.
    Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In: Proceedings the Annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2008)Google Scholar
  31. 31.
    Boguraev, B., Pustejovsky, J., Ando, R., Verhagen, M.: Time Bank Evolution as a Community Resource for TimeML Parsing. Lang. Res. Eval. 41(1), 91–115 (2007)CrossRefGoogle Scholar
  32. 32.
    Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsky, J.: SemEval-2007 Task 15: TempEval: temporal relation identification. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval) (2007)Google Scholar
  33. 33.
    Bethard, S., Martin, J., Klingenstein, S.: Timelines from Text: Identification of syntactic temporal relations. In: Proceedings of the International Conference on Semantic Computing, pp. 11–18 (2007)Google Scholar
  34. 34.
    Tannier, X., Müller, P.: Evaluating temporal graphs built from texts via transitive reduction. J. Artif. Intell. Res. 40, 375–413 (2011)zbMATHGoogle Scholar
  35. 35.
    Kelley Jr, J., Walker, M.: Critical-path planning and scheduling. AFIPS Joint Computer Conferences, pp. 160–173 (1959)Google Scholar
  36. 36.
    Levenshtein, V.: Binary codes capable of correcting spurious insertions and deletions of ones. Probl. Inf. Trans. 1(1), 8–17 (1965)MathSciNetzbMATHGoogle Scholar
  37. 37.
    UzZaman, N., Allen, J.: Temporal evaluation. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 351–356. Association for Computational Linguistics (2011)Google Scholar
  38. 38.
    Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Moszkowicz, J., Pustejovsky, J.: The TempEval challenge: identifying temporal relations in text. Lang. Res. Eval. 43(2), 161–179 (2009)CrossRefGoogle Scholar
  39. 39.
    Verhagen, M., Saurí, R., Caselli, T., Pustejovsky, J.: SemEval-2010 Task 13: TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 57–62. Association for Computational Linguistics (2010)Google Scholar
  40. 40.
    UzZaman, N., Llorens, H., Derczynski, L., Verhagen, M., Allen, J., Pustejovsky, J.: SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations. In: Proceedings of the SemEval workshop. Association for Computational Linguistics (2013)Google Scholar
  41. 41.
    Minard, A.L., Agirre, E., Aldabe, I., van Erp, M., Magnini, B., Rigau, G., Speranza, M., Urizar, R.: SemEval-2015 Task 4: TimeLine: Cross-Document Event Ordering. In: Proceedings of the workshop on Semantic Evaluation. Association for Computational Linguistics (2015)Google Scholar
  42. 42.
    Llorens, H., Chambers, N., UzZaman, N., Mostafazadeh, N., Allen, J., Pustejovsky, J.: SemEval-2015 Task 5: QA TempEval. In: Proceedings of the workshop on Semantic Evaluation. Association for Computational Linguistics (2015)Google Scholar
  43. 43.
    Bethard, S., Derczynski, L., Pustejovsky, J., Verhagen, M.: SemEval-2015 Task 6: Clinical TempEval. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Association for Computational Linguistics. Association for Computational Linguistics (2015)Google Scholar
  44. 44.
    Popescu, O., Strapparava, C.: SemEval-2015 Task 7: Diachronic Text Evaluation. In: Proceedings of the workshop on Semantic Evaluation. Association for Computational Linguistics (2015)Google Scholar
  45. 45.
    Boguraev, B., Ando, R.: TimeML-compliant text analysis for temporal reasoning. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2005)Google Scholar
  46. 46.
    Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization of winnow. J. Mach. Learn. Res. 2, 615–637 (2002)zbMATHGoogle Scholar
  47. 47.
    Hepple, M., Setzer, A., Gaizauskas, R.: USFD: preliminary exploration of features and classifiers for the TempEval-2007 tasks. In: Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval ’07, pp. 438–441. Association for Computational Linguistics (2007)Google Scholar
  48. 48.
    Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., Radev, D., Sundheim, B., Day, D., Ferro, L., et al.: The TimeBank Corpus. In: Proceedings of the Corpus Linguistics conference, pp. 647–656 (2003)Google Scholar
  49. 49.
    ARDA: Aquaint timeml corpus (2006). http://www.timeml.org/site/timebank/timebank.html
  50. 50.
    Mirroshandel, S., Ghassem-Sani, G., Khayyamian, M.: Using syntactic-based kernels for classifying temporal relations. J. Comput. Sci. Technol. 26(1), 68–80 (2010)CrossRefGoogle Scholar
  51. 51.
    Chambers, N., Jurafsky, D.: Jointly combining implicit constraints improves temporal ordering. In: Proceedings of EMNLP, pp. 698–706. ACL (2008)Google Scholar
  52. 52.
    Vasilakopoulos, A., Black, W.: Temporally ordering event instances in natural language texts. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2005) (2005)Google Scholar
  53. 53.
    Mani, I., Schiffman, B., Zhang, J.: Inferring temporal ordering of events in news. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 55–57. Association for Computational Linguistics (2003)Google Scholar
  54. 54.
    Reichenbach, H.: The tenses of verbs. Elements of Symbolic Logic. Dover Publications, New York (1947)Google Scholar
  55. 55.
    Kolya, A., Ekbal, A., Bandyopadhyay, S.: Event-time relation identification using machine learning and rules. In: Text, Speech and Dialogue, pp. 117–124. Springer, Heidelberg (2011)Google Scholar
  56. 56.
    Minsky, M.: Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Magazine 12(2), 34 (1991)Google Scholar
  57. 57.
    Kolya, A., Ekbal, A., Bandyopadhyay, S.: Event-event relation identification: a CRF based approach. In: 2010 International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), pp. 1–8. IEEE (2010)Google Scholar
  58. 58.
    Kolya, A., Ekbal, A., Bandyopadhyay, S.: JU_CSE_TEMP: A first step towards evaluating events, time expressions and temporal relations. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 345–350 (2010)Google Scholar
  59. 59.
    Min, C., Srikanth, M., Fowler, A.: LCC-TE: A hybrid approach to temporal relation identification in news text. In: Proceedings of SemEval-2007, pp. 219–222. ACL (2007)Google Scholar
  60. 60.
    Hagège, C., Tannier, X.: XRCE-T: XIP temporal module for TempEval campaign. In: Proceedings of the fourth international workshop on semantic evaluations (SemEval-2007), pp. 492–495 (2007)Google Scholar
  61. 61.
    Yoshikawa, K., Riedel, S., Asahara, M., Matsumoto, Y.: Jointly identifying temporal relations with Markov logic. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 405–413. Association for Computational Linguistics (2009)Google Scholar
  62. 62.
    Bethard, S., Martin, J., Klingenstein, S.: Finding temporal structure in text: machine learning of syntactic temporal relations. Int. J. Semant. Comput. 1(4), 441 (2007)CrossRefGoogle Scholar
  63. 63.
    Cheng, Y., Asahara, M., Matsumoto, Y.: NAIST.Japan: temporal relation identification using dependency parsed tree. In: Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval ’07, pp. 245–248. Association for Computational Linguistics (2007)Google Scholar
  64. 64.
    UzZaman, N., Allen, J.: TRIPS and TRIOS system for TempEval-2: Extracting temporal information from text. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 276–283. Association for Computational Linguistics (2010)Google Scholar
  65. 65.
    Marsic, G.: Temporal processing of news: Annotation of temporal expressions, verbal events and temporal relations. Ph.D. thesis, University of Wolverhampton (2011)Google Scholar
  66. 66.
    Puşcaşu, G.: WVALI: Temporal relation identification by syntactico-semantic analysis. In: Proceedings of the 4th International Workshop on SemEval, vol. 2007, pp. 484–487 (2007)Google Scholar
  67. 67.
    Ha, E., Baikadi, A., Licata, C., Lester, J.: NCSU: Modeling temporal relations with markov logic and lexical ontology. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval ’10, pp. 341–344. Association for Computational Linguistics (2010)Google Scholar
  68. 68.
    Llorens, H., Saquete, E., Navarro, B.: TIPSem (English and Spanish): Evaluating CRFs and Semantic Roles in TempEval-2. In: Proceedings of the SemEval-2010, pp. 284–291. ACL (2010)Google Scholar
  69. 69.
    Llorens, H., Saquete, E., Navarro-Colorado, B.: Automatic system for identifying and categorizing temporal relations in natural language. Int. J. Intell. Syst. 27, 680–708 (2012)CrossRefGoogle Scholar
  70. 70.
    Derczynski, L., Gaizauskas, R.: Using signals to improve automatic classification of temporal relations. In: Proceedings of the ESSLLI StuS (2010)Google Scholar
  71. 71.
    Derczynski, L., Gaizauskas, R.: USFD2: Annotating temporal expressions and TLINKs for TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 337–340. Association for Computational Linguistics (2010)Google Scholar
  72. 72.
    Bethard, S., Savova, G., Chen, W.T., Derczynski, L., Pustejovsky, J., Verhagen, M.: Semeval-2016 task 12: Clinical tempeval. In: Proceedings of SemEval pp. 1052–1062 (2016)Google Scholar
  73. 73.
    Miller, T.A., Bethard, S., Dligach, D., Pradhan, S., Lin, C., Savova, G.K.: Discovering narrative containers in clinical text. ACL 2013, 18 (2013)Google Scholar
  74. 74.
    Pustejovsky, J., Stubbs, A.: Increasing informativeness in temporal annotation. In: Proceedings of the 5th Linguistic Annotation Workshop, pp. 152–160. Association for Computational Linguistics (2011)Google Scholar
  75. 75.
    Tatu, M., Srikanth, M.: Experiments with reasoning for temporal relations between events. In: Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, pp. 857–864. Association for Computational Linguistics (2008)Google Scholar
  76. 76.
    Dang, H., Lin, J., Kelly, D.: Overview of the trec 2006 question answering track. In: Proceedings of the Text Retrieval and Evaluation Conference (2008)Google Scholar
  77. 77.
    Howald, B., Katz, E.: On the explicit and implicit spatiotemporal architecture of narratives of personal experience. Spatial Information Theory, pp. 434–454 (2011)Google Scholar
  78. 78.
    Ji, H., Grishman, R., Dang, H., Li, X., Griffit, K., Ellis, J.: Overview of the TAC2011 Knowledge Base Population Track. In: Proceedings of the Text Analytics Conference (2011)Google Scholar
  79. 79.
    Burman, A., Jayapal, A., Kannan, S., Kavilikatta, M., Alhelbawy, A., Derczynski, L., Gaizauskas, R.: USFD at KBP 2011: Entity linking, slot filling and temporal bounding. In: Proceedings of the Text Analytics Conference (2011)Google Scholar
  80. 80.
    Chambers, N., Wang, S., Jurafsky, D.: Classifying temporal relations between events. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 173–176. Association for Computational Linguistics (2007)Google Scholar
  81. 81.
    Mirroshandel, S., Ghassem-Sani, G.: Temporal relation extraction using expectation maximization. In: Proceedings of RANLP (2011)Google Scholar
  82. 82.
    Mirroshandel, S., Ghassem-Sani, G., Nasr, A.: Active learning strategies for support vector machines, application to temporal relation classification. In: Proceedings of 5th International Joint Conference on Natural Language Processing, pp. 56–64 (2011)Google Scholar
  83. 83.
    Mirroshandel, S., Ghassem-Sani, G.: Temporal relations learning with a bootstrapped cross-document classifier. In: Proceeding of the 19th European Conference on Artificial Intelligence, pp. 829–834 (2010)Google Scholar
  84. 84.
    Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: OntoNotes: the 90% solution. In: Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pp. 57–60. Association for Computational Linguistics (2006)Google Scholar
  85. 85.
    Lapata, M., Lascarides, A.: Learning sentence-internal temporal relations. J. Artif. Intell. Res. 27(1), 85–117 (2006)zbMATHGoogle Scholar
  86. 86.
    Gaizauskas, R., Harkema, H., Hepple, M., Setzer, A.: Task-oriented extraction of temporal information: the case of clinical narratives. In: Thirteenth International Symposium on Temporal Representation and Reasoning, TIME 2006, pp. 188–195. IEEE (2006)Google Scholar
  87. 87.
    Bramsen, P., Deshpande, P., Lee, Y., Barzilay, R.: Finding temporal order in discharge summaries. In: AMIA Annual Symposium Proceedings, vol. 2006, p. 81. American Medical Informatics Association (2006)Google Scholar
  88. 88.
    Bethard, S., Martin, J.: CU-TMP: temporal relation classification using syntactic and semantic features. In: Proceedings of the 4th International Workshop on Semantic Evaluations. SemEval ’07, pp. 129–132. Association for Computational Linguistics, Stroudsburg, PA, USA (2007)Google Scholar
  89. 89.
    Costa, F., Branco, A.: Temporal relation classification based on temporal reasoning. In: Proceedings of the International Conference on Computational Semantics. Association for Computational Linguistics (2013)Google Scholar
  90. 90.
    Hovy, D., Fan, J., Gliozzo, A., Patwardhan, S., Welty, C.: When did that happen?: linking events and relations to timestamps. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 185–193. Association for Computational Linguistics (2012)Google Scholar
  91. 91.
    Laokulrat, N., Miwa, M., Tsuruoka, Y.: Exploiting timegraphs in temporal relation classification. In: TextGraphs-9 (2014)Google Scholar
  92. 92.
    Puşcaşu, G.: Discovering temporal relations with TICTAC. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2007) (2007)Google Scholar
  93. 93.
    Lee, C., Katz, G.: Error analysis of the TempEval temporal relation identification task. In: SEW-2009 Semantic Evaluations: Recent Achievements and Future Directions, pp. 138–145 (2009)Google Scholar
  94. 94.
    Velupillai, S., Mowery, D.L., Abdelrahman, S., Christensen, L., Chapman, W.W.: BluLab: Temporal information extraction for the2015 clinical TempEval challenge. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Association for Computational Linguistics. Association for Computational Linguistics (2015)Google Scholar
  95. 95.
    Scheuermann, A., Motta, E., Mulholland, P., Gangemi, A., Presutti, V.: An empirical perspective on representing time. In: Proceedings of the seventh international conference on Knowledge capture, pp. 89–96. ACM (2013)Google Scholar
  96. 96.
    Derczynski, L.: Representation and Learning of Temporal Relations. Proceedings of the 26th International Conference on Computational Linguistics. Association for Comptuational Linguistics (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations