Advertisement

Introduction

  • Leon R. A. DerczynskiEmail author
Chapter
  • 440 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 677)

Abstract

Humans developed natural language to communicate; over past millennia, it has been the most efficient form of transferring the majority of information between individuals. With the advent of computing, large amounts of natural language text are stored in digital format. The study of computational linguistics helps link the significant power of the computer with the efficiency of communicating in natural language.

Keywords

Natural Language Temporal Information Temporal Relation Relation Typing Question Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gaizauskas, R., Wilks, Y.: Information extraction: beyond document retrieval. J. Doc. 54(1), 70–105 (1998)CrossRefGoogle Scholar
  2. 2.
    Carlson, A., Betteridge, J., Wang, R., Hruschka Jr, E., Mitchell, T.: Coupled semi-supervised learning for information extraction. In: Proceedings of the third ACM International Conference on Web search and data mining, pp. 101–110 (2010)Google Scholar
  3. 3.
    McTaggart, J.: The unreality of time. Mind 17(4), 457 (1908)CrossRefzbMATHGoogle Scholar
  4. 4.
    Pustejovsky, J.: The syntax of event structure. Cognition 41(1–3), 47 (1991)CrossRefGoogle Scholar
  5. 5.
    Wang, W., Su, J., Tan, C.: Kernel based discourse relation recognition with temporal ordering information. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 710–719 (2010)Google Scholar
  6. 6.
    Bestgen, Y., Vonk, W.: Temporal adverbials as segmentation markers in discourse comprehension. J. Mem. Lang. 42(1), 74–87 (1999)CrossRefGoogle Scholar
  7. 7.
    Bramsen, P., Deshpande, P., Lee, Y., Barzilay, R.: Finding temporal order in discharge summaries. In: AMIA Annual Symposium Proceedings, American Medical Informatics Association vol. 2006, p. 81 (2006)Google Scholar
  8. 8.
    Jean-Louis, L., Besançon, R., Ferret, O.: Using temporal cues for segmenting texts into events. Adv. Nat. Lang. Process. 6223, 150–161 (2010)CrossRefGoogle Scholar
  9. 9.
    Filatova, E., Hatzivassiloglou, V.: Event-based extractive summarization. In: Proceedings of the ACL Workshop on Summarization, pp. 104–111 (2004)Google Scholar
  10. 10.
    Horie, A., Tanaka-Ishii, K., Ishizuka, M.: Verb temporality analysis using Reichenbach’s tense system: Towards interlingual MT. In: Proceedings of the International Conference on Computational Linguistics, Association for Computational Linguistics pp. 471–482 (2012)Google Scholar
  11. 11.
    Derczynski, L.R., Yang, B., Jensen, C.S.: Towards context-aware search and analysis on social media data. In: Proceedings of the 16th International Conference on extending database technology, ACM, pp. 137–142 (2013)Google Scholar
  12. 12.
    Derczynski, L., Gaizauskas, R.: Information retrieval for temporal bounding. In: Proceedings of the 2013 Conference on the Theory of Information Retrieval, ACM, pp. 129–130 (2013)Google Scholar
  13. 13.
    Derczynski, L., Strötgen, J., Campos, R., Alonso, O.: Time and information retrieval: introduction to the special issue. Inf. Process. Manag. 51(6), 786–790 (2015)CrossRefGoogle Scholar
  14. 14.
    Johansson, R., Berglund, A., Danielsson, M., Nugues, P.: Automatic text-to-scene conversion in the traffic accident domain. In: International Joint Conference on Artificial Intelligence, vol. 19, p. 1073 (2005)Google Scholar
  15. 15.
    Howald, B., Katz, E.: On the explicit and implicit spatiotemporal architecture of narratives of personal experience. Spat. Inf. Theory 6899, 434–454 (2011)CrossRefGoogle Scholar
  16. 16.
    Savova, G., Bethard, S., Styler, W., Martin, J., Palmer, M., Masanz, J., Ward, W.: Towards temporal relation discovery from the clinical narrative. In: AMIA Annual Symposium Proceedings, American Medical Informatics Association, vol. 2009, p. 568 (2009)Google Scholar
  17. 17.
    Jung, H., Allen, J., Blaylock, N., de Beaumont, W., Galescu, L., Swift, M.: Building timelines from narrative clinical records: Initial results based-on deep natural language understanding. In: Proceedings of ACL-HLT, Association for Computational Linguistics, p. 146 (2011)Google Scholar
  18. 18.
    Verhagen, M., Saurí, R., Caselli, T., Pustejovsky, J.: SemEval-2010 task 13: TempEval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, Association for Computational Linguistics, pp. 57–62 (2010)Google Scholar
  19. 19.
    Derczynski, L.: Determining the types of temporal relations in discourse. Ph.D. thesis, The University of Sheffield (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations