Advertisement

Hybrid Uncertainty-Based Techniques for Segmentation of Satellite Imagery and Applications

  • B. K. TripathyEmail author
  • P. Swarnalatha
Chapter

Abstract

Segmentation of an image is an essential assignment in an image examination whereby picture is divided into significant areas whose focuses have almost the same properties like; dim levels, mean qualities, or text-related characteristics. The pictures are divided into locales which best speak to the important articles in the scene. Locale parameters, for example, territory, shape, measurable parameters, and surface can be extricated and utilized for further examination of information. The examination of satellite symbolism of common scenes presents numerous one of a kind issues and it varies from an investigation and division of urban, business, or agrarian ranges. Once the division classes of a picture is obtained, it is conceivable to utilize heuristics or other area particular ways to deal with further characterize, translate, comprehend, register or extract information from the partitioned image. The applications of analysis of satellite imagery is plenty in real-life situations like weather forecasting, analysis of natural scenes, urban planning, environmental monitoring, object recognition, detection of mass wasting, etc. are well known. Several algorithms using classical approaches as well as those using uncertainty-based approaches have been proposed. The analysis shows that hybrid approaches are more efficient than the individual ones. In this chapter, we discuss on all the uncertainty-based and hybrid algorithms for segmentation of satellite imagery and their applications. Also, we propose some open problems which can be handled for future work.

Keywords

Image segmentation Satellite image Fuzzy set Rough set Intuitionistic fuzzy set Hybrid models Data clustering 

References

  1. 1.
    Adak, C.: Rough clustering based unsupervised image change detection. arXiv preprint arXiv:1404.6071 (2014)
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baboo, S.S., Thirunavukkarasu, S.: Image segmentation using high resolution multispectral satellite imagery implemented by fcm clustering techniques. Int. J. Comput. Sci. Issues (IJCSI) 11(3), 154 (2014)Google Scholar
  4. 4.
    Barlow, J., Franklin, S., Martin, Y.: High spatial resolution satellite imagery, dem derivatives, and image segmentation for the detection of mass wasting processes. Photogramm. Eng. Remote Sens. 72(6), 687–692 (2006)CrossRefGoogle Scholar
  5. 5.
    Bermúdez, J.D., Segura, J.V., Vercher, E.: A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets Syst. 188(1), 16–26 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bhaskaran, S., Paramananda, S., Ramnarayan, M.: Per-pixel and object-oriented classification methods for mapping urban features using ikonos satellite data. Appl. Geogr. 30(4), 650–665 (2010)CrossRefGoogle Scholar
  7. 7.
    Farooque M., YasirRaeen, S.: Self organizing map based improved color image segmentation. International Journal of Advanced Research in Computer Science and Software Engineering 6(3), 456–462 (2016)Google Scholar
  8. 8.
    Gagrani, A., Gupta, L., Ravindran, B., Das, S., Roychowdhury, P., Panchal, V.: A hierarchical approach to landform classification of satellite images using a fusion strategy. In: Computer Vision, Graphics and Image Processing, pp. 140–151. Springer, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Ganesan, P., Rajini, V., Sathish, B., Kalist, V., Basha, S.K.: Satellite image segmentation based on ycbcr color space. Indian J. Sci. Technol. 8(1), 35–41 (2015)CrossRefGoogle Scholar
  10. 10.
    Garai, A., Mali, K.: Density based fuzzy c means (DBFCM) image segmentationGoogle Scholar
  11. 11.
    Guarnieri, A., Vettore, A.: Automated techniques for satellite image segmentation. Int. Arch. photogramm. Remote Sens. Spat Info. Sci. 34(4), 406–410 (2002)Google Scholar
  12. 12.
    Hanmandlu, M., Jha, D., Sharma, R.: Segmentation of Satellite Images by Modified Mountain Clustering (2000). https://www.cse.iitb.ac.in/~sharat/icvgip.org/icvgip00/I-47.pdf
  13. 13.
    Huckle, R., Olesen, F.: Cloud analysis from meteosat data using image segmentation for climate model verification. In: Proccessings of the EUMETSAT Meteorological Satellite Conference. Citeseer (2008)Google Scholar
  14. 14.
    Lakshmanan, V., Rabin, R., DeBrunner, V.: Hierarchical texture segmentation of weather radar and satellite images. Use of Meteosat WV data for monitoring moisture changes in the environment of a tornado-producing storm, p. 37 (2001)Google Scholar
  15. 15.
    Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J. Intell. Info. Syst. 23(1), 5–16 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    MACQUEEN, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, vol. 1, pp. 281–297. University of California Press (1967)Google Scholar
  17. 17.
    Maji, P., Pal, S.K.: Rfcm: A hybrid clustering algorithm using rough and fuzzy sets. Fundam. Informs. 80(4), 475–496 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Maji, P., Pal, S.K.: Rough set based generalized fuzzy-means algorithm and quantitative indices. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(6), 1529–1540 (2007)CrossRefGoogle Scholar
  19. 19.
    Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R., Varghese, K., Kalra, M.: A hierarchical multi-classifier framework for landform segmentation using multi-spectral satellite images-a case study over the indian subcontinent. In: Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT), pp. 306–313. IEEE (2010)Google Scholar
  20. 20.
    Meinel, G., Lippold, R., Netzband, M.: The potential use of new high resolution satellite data for urban and regional planning. IMAGE (1997)Google Scholar
  21. 21.
    Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognit. Lett. 25(12), 1439–1449 (2004)CrossRefGoogle Scholar
  22. 22.
    Mukhopadhyay, A., Bandyopadhyay, S., Maulik, U.: Clustering using multi-objective genetic algorithm and its application to image segmentation. In: IEEE International Conference on Systems, Man and Cybernetics, 2006. SMC’06. vol. 3, pp. 2678–2683. IEEE (2006)Google Scholar
  23. 23.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic clustering with ensemble among pareto front solutions: Application to mri brain image segmentation. In: Seventh International Conference on Advances in Pattern Recognition, 2009. ICAPR’09. pp. 236–239. IEEE (2009)Google Scholar
  24. 24.
    Parikh, J.A., Rosenfeld, A.: Automatic segmentation and classification of infrared meteorological satellite data. IEEE Trans. Syst. Man Cybern. Part B Cybern. 8(10), 736–743 (1978)CrossRefGoogle Scholar
  25. 25.
    Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)CrossRefGoogle Scholar
  26. 26.
    Prabu, S., Tripathy, B.K., Swarnalatha, P., Ramakrishna, R., Moorthi S.M.: Depth Reconstruction using Geometric Correction with Anaglyph Approach for Satellite Imagery, pp. 5–14 (2014)Google Scholar
  27. 27.
    Price, C., Tarabalka, Y., Brucker, L.: Graph-based method for multitemporal segmentation of sea ice floes from satellite data. In: Latin American Remote Sensing Week (2013)Google Scholar
  28. 28.
    Rao, S.G., Puri, M., Das, S.: Unsupervised segmentation of texture images using a combination of gabor and wavelet features. In: ICVGIP, pp. 370–375 (2004)Google Scholar
  29. 29.
    Ravali, K., Kumar, M.R., Rao, K.V.: Graph-based high resolution satellite image segmentation for object recognition. Int. Arch. Photogramm. Remote Sens. Spat. Info. Sci. 40(8), 913 (2014)CrossRefGoogle Scholar
  30. 30.
    Rekik, A., Zribi, M., Hamida, A.B., Benjelloun, M.: An optimal unsupervised satellite image segmentation approach based on pearson system and k-means clustering algorithm initialization. methods 8, 9Google Scholar
  31. 31.
    Sathya, P., Malathi, L.: Classification and segmentation in satellite imagery using back propagation algorithm of ann and k-means algorithm. Int. J. Mach. Learn. Comput. 1(4), 422 (2011)CrossRefGoogle Scholar
  32. 32.
    Shelestov, A., Kravchenko, O., Korbakov, M.: Services for Satellite Data Processing (2005)Google Scholar
  33. 33.
    Soh, L.K., Tsatsoulis, C.: Segmentation of satellite imagery of natural scenes using data mining. IEEE Trans. Geosci. Remote Sens. 37(2), 1086–1099 (1999)CrossRefGoogle Scholar
  34. 34.
    Swarnalatha, P., Tripathy, B.: A novel fuzzy c-means approach with bit plane algorithm for classification of medical images. In: International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), pp. 360–365. IEEE (2013)Google Scholar
  35. 35.
    Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles (1974)Google Scholar
  36. 36.
    Vieira, S.M., Sousa, J.M., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy Sets Syst. 189(1), 1–18 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Xiong, H., Wu, J., Chen, J.: K-means clustering versus validation measures: a data-distribution perspective. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(2), 318–331 (2009)CrossRefGoogle Scholar
  38. 38.
    Zadeh, L.A.: Fuzzy sets. Info. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations