Microscopic Image Segmentation Using Hybrid Technique for Dengue Prediction

  • Pramit GhoshEmail author
  • Ratnadeep Dey
  • Kaushiki Roy
  • Debotosh Bhattacharjee
  • Mita Nashipuri


An application of hybrid soft computing technique for early detection and treatment of a most common mosquito-borne viral disease Dengue, is discussed thoroughly in this chapter. The global pictures of dengue endemics are shown clearly. The structure of dengue virus and the infection procedure of the virus are also discussed. A detailed analysis of dengue illness, diagnosis methods, and treatments has been done to conclude that platelet counting is needful for early diagnosis of Dengue illness and for monitoring the health status of the patients. The main challenge in developing an automated platelet counting system for efficient, easy, and fast detection of dengue infection as well as treatment, is in the segmentation of platelets from microscopic images of a blood smear. This chapter shows how the challenges can be overcome. Color-based segmentation and k-means clustering cannot provide desired outputs in all possible situations. A hybrid soft computing technique efficiently segments platelet and overcomes the shortcomings of the other two segmentation techniques. This technique is the combination of fuzzy c-means technique and adaptive network-based fuzzy interference system (ANFIS). We have applied three different segmentation techniques namely color-based segmentation, k-means, and the hybrid soft computing technique on poor intensity images. However, only the hybrid soft computing technique detects the platelets correctly.


ANFIS Average filter Color segmentation Dengue Fuzzy c-means L*a*b color space Platelet counting K-means clustering 



Authors of this chapter are paying their thanks to the Department of Bio-Technology, Govt. of India for sanctioning and funding the project (Letter No - BT/PR8456/MED/29/739/2013).


  1. 1.
    Global strategy for dengue prevention and control 2012–2020; World Health Organization (2012). ISBN 978 92 4 150403 4Google Scholar
  2. 2.
    Handbook for clinical management of dengue; World Health Organization (2012). ISBN 978 92 4 150471 3Google Scholar
  3. 3.
    Global report on dengue, WHO. (Updated February 2015). Accessed 4th Feb 2016
  4. 4.
    Wang, W., Song, H., Zhao, Q.: A modified watersheds image segmentation algorithm for blood cell. In: International Conference on Communications, Circuits, and Systems Proceedings, vol. 1, Guilin (2006)Google Scholar
  5. 5.
    Sharif, J.M., Miswan, M.F., Ngadi, M.A., Salam, S.H., bin Abdul Jamil, M.M.: Red blood cell segmentation using masking and watershed algorithm: a preliminary study. In: International Conference on Biomedical Engineering (ICoBE), Penang, pp. 258–262, 27–28 Feb 2012Google Scholar
  6. 6.
    Karunakar, Y., Dr Kuwadekar, A.: An unparagoned application for red blood cell counting using marker controlled watershed algorithm for android mobile. In: Fifth International Conference on Next Generation Mobile Applications and Services, Cardiff, pp. 100–104 (2011)Google Scholar
  7. 7.
    Guan, P.P., Yan, H.: Blood cell image segmentation based on the hough transform and fuzzy curve tracing. In: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Guilin, 10–13 July 2011Google Scholar
  8. 8.
    Venkatalakshmi, B., Thilagavathi, K.: Automatic red blood cell counting using hough transform. In: Proceedings of the 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)Google Scholar
  9. 9.
    Kareem, S., Morling, R.C.S., Kale, I.: A novel method to count the red blood cells in thin blood films. In: IEEE International Symposium on Circuits and Systems (ISCAS) (2011)Google Scholar
  10. 10.
    Mohamed, M.M.A., Far, B.: A fast technique for white blood cells nuclei automatic segmentation based on Gram–Schmidt orthogonalization. In: IEEE 24th International Conference on Tools with Artificial Intelligence, Athens, pp. 947–952 (2012)Google Scholar
  11. 11.
    Liao, Q., Deng, Y.: An accurate segmentation method for white blood cell images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (2002)Google Scholar
  12. 12.
    Mohapatra, S., Patra, D., Kumar, K.: Unsupervised leukocyte image segmentation using rough fuzzy clustering. In: International Scholarly Research Network ISRN Artificial Intelligence, vol. 2012, Article ID 923946Google Scholar
  13. 13.
    Rovithakis, G.A., Maniadakis, M., Zervakis, M.: A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification. In: IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, pp. 695–703, vol. 34, no. 1, Feb 2004Google Scholar
  14. 14.
    Laosai, J., Chamnongthai, K.: Acute leukemia classification by using SVM and K-means clustering. In: Proceedings of the International Electrical Engineering Congress (2014)Google Scholar
  15. 15.
    Simmons, C.P., Farrar, J.J., van VinhChau, N., Wills, B.: Dengue. N. Engl. J. Med. 366, 1423–1432 (2012)CrossRefGoogle Scholar
  16. 16.
    WHO.: Dengue and Severe Dengue (Fact Sheet No. 117, Revised January 2012). World Health Organization, Geneva (2012)Google Scholar
  17. 17.
    Shepard, D.S., et al.: Cost-effectiveness of apaediatric dengue vaccine. Vaccine 22, 1275–1280 (2004)CrossRefGoogle Scholar
  18. 18.
    Dengue: prevention and control, World Health Organisation, 21 Nov 2014Google Scholar
  19. 19.
    Update on the Dengue situation in the Western Pacific Region; WHO, 17th Nov 2015Google Scholar
  20. 20.
    Dengue Cases and Deaths in the Country since 2009; National Vector Borne Disease Control Programme, Directorate General of Health Services, Ministry of Health & Family Welfare, Govt. of India. (Accessed 3rd Dec 2015)
  21. 21.
  22. 22.
  23. 23.
    Eckert, R.L., Rorke, E.A.: Molecular biology of keratinocyte differentiation. Env. Health Perspect. 80, 109–116 (1989)CrossRefGoogle Scholar
  24. 24.
    Chomiczewska, D., Trznadel-Budko, E., Kaczorowska, A., Rotsztejn, H.: The role of Langerhans cells in the skin immune system. Pol Merkur Lekarski 26(153), 173–177 (2009)Google Scholar
  25. 25.
  26. 26.
  27. 27.
    Dengue guidelines for diagnosis, treatment, prevention and control, A joint publication of the World Health Organization (WHO) and the Special Programme for Research and Training in Tropical Diseases (TDR) (2009)Google Scholar
  28. 28.
  29. 29.
    Rigau-Prez, J.G., et al.: Dengue and dengue haemorrhagic fever. Lancet 352, 971977 (1998)Google Scholar
  30. 30.
    Kalayanarooj, S., et al.: Early clinical and laboratory indicators of acute dengue illness. J. Infect. Dis. 176, 313–321 (1997)CrossRefGoogle Scholar
  31. 31.
    Balmaseda, A., et al.: Assessment of the World Health Organization scheme for classification of dengueseverity in Nicaragua. Am. J. Trop. Med. Hyg. 73, 1059–1062 (2005)Google Scholar
  32. 32.
    Lum, L.C.S., et al.: Quality of life of dengue patients. Am. J. Trop. Med. Hyg. 78(6), 862–867 (2008)Google Scholar
  33. 33.
    Cao, X.T., et al.: Evaluation of the World Health Organization standard tourniquet test in the diagnosis ofdengue infection in Vietnam. Trop. Med. Int. Health 7, 125–132 (2002)CrossRefGoogle Scholar
  34. 34.
    Srikiatkhachorn, A., et al.: Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonic study. Pediatric Infect. Dis. J. 26(4), 283–290 (2007)CrossRefGoogle Scholar
  35. 35.
    Nimmannitya, S., et al.: Dengue and chikungunya virus infection in man in Thailand, 196264. Observations onhospitalized patients with haemorrhagic fever. Am. J. Trop. Med. Hyg. 18(6), 954–971 (1969)Google Scholar
  36. 36.
    Clinical Practice Guidelines on Management of DengueInfection in Adults (Revised 2nd Edition). Ministry of Health Malaysia, Academy of Medicine Malaysia (2010)Google Scholar
  37. 37.
    Morens, D.M.: Dengue outbreak investigation group. Dengue in Puerto Rico: public health response to characterize and control an epidemic of multiple serotypes. Am. J. Trop. Med. Hyg. 1986(35), 197–211 (1977)Google Scholar
  38. 38.
    Wilder-Smith, A., Earnes, A., Paton, N.I.: Use of simple laboratory features to distinguish the early stage of severe acute respiratory syndrome from dengue fever. Clin. Infect. Dis. 39(12), 1818–1823 (2004)CrossRefGoogle Scholar
  39. 39.
    Kularatne, S.A., et al.: Concurrent outbreaks of Chikungunya and Dengue fever in Kandy, Sri Lanka, 2006–2007: a comparative analysis of clinical and laboratory features. Postgrad. Med. J. 2009(85), 342–346 (1005)Google Scholar
  40. 40.
    Yamamoto, K., et al.: Chikungunya fever from Malaysia. Intern. Med. 49(5), 501–505 (2010)CrossRefGoogle Scholar
  41. 41.
    Cabie, A., et al.: Dengue or acute retroviral syndrome? Presse Med. 29(21), 1173–1174 (2000)Google Scholar
  42. 42.
    Martinez, E.: Diagnstico diferencial. In: Dengue, pp. 189–195. Rio de Janeiro, Fiocruz (2005)Google Scholar
  43. 43.
    Dietz, V.J., et al.: Diagnosis of measles by clinical case definition in dengue endemic areas: implications for measles surveillance and control. Bull. World Health Organ. 70(6), 745–750 (1992)MathSciNetGoogle Scholar
  44. 44.
    Flannery, B., et al.: Referral pattern of leptospirosis cases during a large urban epidemic of dengue. Am. J. Med. Trop. Hyg. 65(5), 657–663 (2001)Google Scholar
  45. 45.
    Mcfarlane, M.E.C., Plummer, J.M., Leake, P.A., Powell, L., Chand, V., Chung, S., Tulloch, K.: Dengue fever mimicking acute appendicitis: a case report. Int. J. Surg. Case Rep. 4(11), 1032–1034 (2013)CrossRefGoogle Scholar
  46. 46.
    Guideline for clinical management of Dengue Fever, Dengue Haemorrhagic Fever and Dengue Shock Syndrome, Directorate of National Vector Borne Diseases Control Programme, Government of IndiaGoogle Scholar
  47. 47.
    Bain, B.J., Bates, I., Laffan, M.A., Lewis, S.M.: Dacie and Lewis Practical Haematology. Elsevier Churchill Livingstone, Edinburgh (2012)Google Scholar
  48. 48.
    Dung, N.M., Day, N.P., Tam, D.T.: Fluid replacement in dengue shock syndrome: a randomized, double-blind comparison of four intravenous fluid regimens. Clin. Infect. Dis. 29, 787–794 (1999)CrossRefGoogle Scholar
  49. 49.
    Ngo, N.T., Cao, X.T., Kneen, R.: Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin. Infect. Dis. 32, 204–213 (2001)CrossRefGoogle Scholar
  50. 50.
    Wills, B.A., et al.: Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N. Engl. J. Med. 353, 877–889 (2005)CrossRefGoogle Scholar
  51. 51.
    Hung, N.T., et al.: Volume replacement in infants with dengue hemorrhagic fever/dengue shock syndrome. Am. J. Trop. Med. Hyg. 74, 684–691 (2006)Google Scholar
  52. 52.
    Wills, B.A.: Management of dengue. In: Halstead, S.B. (ed.) Dengue, pp. 193–217. Imperial College Press, London (2008)CrossRefGoogle Scholar
  53. 53.
    Dey, R., Roy, K., Bhattacharjee, D., Nasipuri, M., Ghosh, P.: An automated system for segmenting platelets from microscopic images of blood cells. In: 2015 International Symposium on Advanced Computing and Communication (ISACC), India (2015)Google Scholar
  54. 54.
    Zalizam, T., Mudaa, T., Salamb, R.A.: Blood cell image segmentation using hybrid K-means and median-cut algorithms. In: 2011 IEEE International Conference on Control System, Computing and Engineering, Penang, pp. 237–243Google Scholar
  55. 55.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision, Chap. 4 Image Filtering (1995)Google Scholar
  56. 56.
    Kaur, A., Kranthi, B.V.: Comparison between YCbCr color space and CIELab color space for skin color segmentation. Int. J. Appl. Inf. Syst. (IJAIS) 3(4) (2012). (ISSN: 2249-0868 Foundation of Computer Science FCS, New York, USA, July 2012)Google Scholar
  57. 57.
    Wang, W., Zhang, Y., Li, Y., Zhang, X.: The global fuzzy c-means clustering algorithm. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June, 2006Google Scholar
  58. 58.
    Garg, V.K., Dr. Bansal, R.K.: Soft computing technique based on ANFIS for the early detection of sleep disorders. In: International Conference on Advances in Computer Engineering and Applications (ICACEA 2015), IMS Engineering College, Ghaziabad, IndiaGoogle Scholar
  59. 59.
    AbdulRazzaq, M., Ariffin, A.K., El-Shafie, A., Abdullah, S., Sajuri, Z.: Prediction of fatigue crack growth rate using rule-based systems. In: 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pramit Ghosh
    • 1
    Email author
  • Ratnadeep Dey
    • 2
  • Kaushiki Roy
    • 2
  • Debotosh Bhattacharjee
    • 2
  • Mita Nashipuri
    • 2
  1. 1.RCC Institute of Information TechnologyKolkataIndia
  2. 2.Jadavpur UniversityKolkataIndia

Personalised recommendations