Hybrid Intelligent Techniques for Segmentation of Breast Thermograms

  • Sourav PramanikEmail author
  • Mrinal Kanti Bhowmik
  • Debotosh Bhattacharjee
  • Mita Nasipuri


The incidence of breast cancer has rapidly increased over the past few decades in India and the mortality rate is more than other countries across the entire world. These facts have motivated the development of new technologies or modification of the existing technologies for the identification of breast cancer before it metastasizes to the neighboring tissues. Breast thermography is a promising front-line breast screening method, which is noncontact, cheap, quick, economic, and painless. The use of thermal imaging for the identification of breast abnormality is based on the principle that the temperature distribution in precancerous tissue and its surrounding area are always higher than that in normal breast tissue. However, the accurate interpretation and classification of the breast thermograms for proper diagnostic decision-making is a major problem. Proper segmentation of hottest region from the segmented breast region plays a key part in the diagnosis of breast cancer that calls for the application of hybrid intelligent methods in the segmentation of hottest region. The shape and size of the hottest regions are used to determine the degree of malignancy of the tumor and classify its type. Hybrid intelligent systems have been successfully applied in the classification of breast thermal images over the last few years. In this chapter, we have proposed a sequential hybrid intelligent technique for the segmentation of the hottest region and also shown the significance of hybrid intelligence systems over the conventional methods for the segmentation of hottest region. A detailed review related to the segmentation of breast region and the segmentation of hottest region is included in this chapter. In addition, this chapter also contains the detailed overview of the principles, reliability, and predictive ability of the breast thermogram in early diagnosis of breast cancer.


Segmentation Fuzzy c-means Devies–Bouldin Index Breast region Hottest region Color segmentation 



Authors are thankful to DBT, Govt. of India for funding a project with Grant no. BT/533/NE/TBP/2014. Sourav Pramanik is also thankful to Department of Electronics and Information Technology (DeitY), Govt. of India, for providing him PhD-Fellowship under Visvesvaraya PhD scheme.


  1. 1.
    International Agency for Research on Cancer (IARC) and World Health Organization (WHO). GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012 (2014).
  2. 2.
  3. 3.
    Gautherie, M.: Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Ann. N. Y. Acad. Sci. 335, 383–415 (1999)CrossRefGoogle Scholar
  4. 4.
    Tan, T.Z., Quek, C., Ng, G.S., Ng, E.Y.K.: A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert Syst. Appl. 33, 652–666 (2007)CrossRefGoogle Scholar
  5. 5.
    Amula, W.C.: A review of breast thermography. Int. Acad. Clin. Thermol. (2003).
  6. 6.
    Borchartt, T.B., Conci, A., Lima, R.C.F., Resmini, R., Sanchez, A.: Breast thermography from an image processing viewpoint: a survey. Signal Process. 93, 2785–2803 (2013)CrossRefGoogle Scholar
  7. 7.
    EtehadTavakol, M., Sadri, S., Ng, E.Y.K.: Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images. J. Med. Syst. 34, 35–42 (2010)CrossRefGoogle Scholar
  8. 8.
    Milosevic, M., Jankovic, D., Peulic, A.: Thermography based breast cancer detection using texture features and minimum variance quantization. EXCLI J. 13, 1204–1215 (2014)Google Scholar
  9. 9.
    Pramanik, S., Bhattacharjee, D., Nasipuri, M.: Wavelet based thermogram analysis for breast cancer detection. In: Proceedings of IEEE International Symposium on Advanced Computing and Communication, Silchar, India, pp. 205–212 (2015)Google Scholar
  10. 10.
    de Oliveira, J.P.S., Conci, A., Perez, M.G., Andaluz, V.H.: Segmentation of infrared images: a new technology for early detection of breast diseases. In: Proceedings of IEEE International Conference on Industrial Technology, Seville, pp. 1765–1771 (2015)Google Scholar
  11. 11.
  12. 12.
    Sobin, L.H., Wittekind, C.H.: TNM classification of malignant tumours, 4th edn. Paris, Springer 100, (1988)Google Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Collaborative Group on Hormonal Factors in Breast Cancer: Breast cancer and breast feeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 20, 187–95 (2002)Google Scholar
  19. 19.
    Thermology. Accessed 24 Jan 2016
  20. 20.
    Gautherine, M., Gros, C.: Contribution of infrared thermography to early diagnosis, pretheraputic prognosis and post-irradiation follow-up of breast carcinomas. Med. Mundi 21, 135–149 (1976)Google Scholar
  21. 21.
    Gautherie, M., Gros, C.M.: Breast thermography and cancer risk prediction. Cancer 45(1), 51–56 (1980)CrossRefGoogle Scholar
  22. 22.
    Kennedy, D., Lee, T., Seely, D.: A comparative review of thermography as a breast screening technique. Integr. Cancer Ther. 8(1), 9–16 (2009)CrossRefGoogle Scholar
  23. 23.
    Gogoi, U.R., Bhowmik, M.K., Bhattacharjee, D., Ghosh, A.K., Majumder, G.: A study and analysis of hybrid intelligent techniques for breast cancer detection using breast thermograms. In: Hybrid Soft Computing Approaches, pp. 329–359 (2015)Google Scholar
  24. 24.
    Amalu, W.C., Hobbins, W.B., Head, J.F., Elliot, R.L.: Infrared imaging of the breast: a review. In: Diakides Nicholas, A., Bronzino Joseph, D. (eds.) Medical Infrared Imaging, pp. 9-1–9-22. Taylor and Francis, Boca Raton (2007)Google Scholar
  25. 25.
    Gershen-Cohen, J., Haberman, J., Brueschke, E.E.: Medical thermography: a summary of current status. Radiol. Clin. North Am. 3, 403–431 (1965)Google Scholar
  26. 26.
    Hoffman, R.: Thermography in the detection of breast malignancy. Am. J. Obstet. Gynecol. 98, 681–686 (1967)CrossRefGoogle Scholar
  27. 27.
    Amalric, R., Giraud, D., Altschule, C., Spitalier, J.M.: Value and interest of dynamic telethermography in detection of breast cance. Acta Thermogr. 1, 89–96 (1976)Google Scholar
  28. 28.
    Hobbins, W.B.: Abnormal thermogram - significance in breast cancer. Interam. J. Rad. 12, 337 (1987)Google Scholar
  29. 29.
    Spitalier, H., Giraud, D., Altschuler, C., Amalric, F., Spitalier, J.M., Brandone, H., Ayme, Y., Gardiol, A.: Does infrared thermography truly have a role in present-day breast cancer management? In: Biomedical Thermology (Proceedings of an International Symposium), pp. 269–278. Alan R. Liss, Inc., New York City (1982)Google Scholar
  30. 30.
    Nyirjesy, I., Ayme, T.: Clinical evaluation, mammography, and thermography in the diagnosis of breast carcinoma. Thermology 1, 170–173 (1986)Google Scholar
  31. 31.
    Parisky, Y.R., Sardi, A., Hamm, R., Hughes, K., Esserman, L., Rust, S., Callahan, K.: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. Am. J. Roentgenol. 180, 263–269 (2003)CrossRefGoogle Scholar
  32. 32.
    Borchartt, T.B., Resmini, R., Conci, A., Martins, A., Silva, A.C., Diniz, E.M., Paiva, A., Lima, R.C.F.: Thermal feature analysis to aid on breast disease diagnosis. In: Proceedings of 21st Brazilian Congress of Mechanical Engineering-COBEM2011, Natal, Brazil, pp. 1–8 (2011)Google Scholar
  33. 33.
    Gautherie, M., Kotewicz, A., Gueblez, P.: Accurate and objective evaluation of breast thermograms: Basic principles and new advances with special reference to an improved computer assisted scoring system. In: Thermal assessment of Breast Health, pp. 72–97. MTP Press Limited (1983)Google Scholar
  34. 34.
    Gautherie, M.: New protocol for the evaluation of breast thermograms. In: Thermological Methods, VCH mbH, pp. 227–235 (1985)Google Scholar
  35. 35.
    Amalu, W.C., Hobbins, W.B., Head, J.F., Elliot, R.L.: Infrared Imaging of the Breast - An Overview, Medical Devices and Systems, pp. 25.1–25.20. CRC Press, Boca Raton (2006)Google Scholar
  36. 36.
  37. 37.
    Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Thermal Sci. 48(5), 849–859 (2009)CrossRefGoogle Scholar
  38. 38.
    Ring, E.F.J.: Quantitative thermal imaging. Clin. Phys. Physiol. Meas. 11, 87–95 (1990)CrossRefGoogle Scholar
  39. 39.
    Thermography Guidelines (TG), Standards and Protocols in Clinical Thermographic Imaging, September 2002. Accessed Feb 2016
  40. 40.
    Qi, H., Head, J.F.: Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms. In: Proceedings of the 23rd Annual International Conference of the IEEE EMBS, 3, Turkey, pp. 2866-2869 (2001)Google Scholar
  41. 41.
    Arena, F., Barone, C., Di Cicco, T.: Use of digital infrared imaging in enhanced breast cancer detection and monitoring of the clinical response to treatment. In: Proceedings of the 25th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), vol. 2, pp. 1129-1132 (2003)Google Scholar
  42. 42.
    Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel, A.J., Osborne, M.P., Simmons, R.M.: Effectiveness of a non-invasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 196(4), 523–526 (2008)CrossRefGoogle Scholar
  43. 43.
    Tang, X., Ding, H., Yuan, Y., Wang, Q.: Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomed. Signal Process. Control 3(1), 312–318 (2008)CrossRefGoogle Scholar
  44. 44.
    Ng, E.Y.K., Kee, E.C.: Integrative computer-aided diagnostic with breast thermogram. J. Mech. Med. Biol. 7(1), 1–10 (2007)CrossRefGoogle Scholar
  45. 45.
    Agostini, V., Knaflitz, M., Molinari, F.: Motion artifact reduction in breast dynamic infrared imaging. IEEE Trans. Biomed. Eng. 56(3), 903–906 (2009)CrossRefGoogle Scholar
  46. 46.
    Wishart, G.C., Campisi, M., Boswell, M., Chapman, D., Shackleton, V., Iddles, S., Hallett, A., Britton, P.D.: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur. J Cancer Surg. 36, 535–540 (2010)Google Scholar
  47. 47.
    Acharya, U.R., Ng, E.Y.K., Tan, J.H., Sree, S.V.: Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2010)CrossRefGoogle Scholar
  48. 48.
    Nurhayati, O.D., Susanto, A., Widodo, T.S., Tjokronagoro, M.: Principal component analysis combined with first order statistical method for breast thermal images classification. Int. J. Comput. Sci. Technol. 2(2), 12–18 (2011)Google Scholar
  49. 49.
    Kontos, M., Wilson, R., Fentiman, I.: Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 66(2011), 536–539 (2011)CrossRefGoogle Scholar
  50. 50.
    Zadeh, H.G., Haddadnia, J., Hashemian, M., Hassanpour, K.: Diagnosis of breast cancer using a combination of genetic algorithm and artificial neural network in medical infrared thermal imaging. Iran J. Med. Phys. 9(4), 265–274 (2012)Google Scholar
  51. 51.
    PROENG. Image processing and image analyses applied to mastology (2012). Accessed 31 Jan 2016
  52. 52.
    Silva, L.F., Saade, D.C.M., Sequeiros-Olivera, G.O., Silva, A.C., Paiva, A.C., Bravo, R.S., Conci, A.: A new database for breast research with infrared image. J. Med. Imaging Health Inf. 4(1), 92–100(9) (2014)Google Scholar
  53. 53.
    Tejerina, A.: Aula de Habilidadesy Simulacion em Patologia de la Mama’ (in Spanish). ADEMAS Comunicacion Grafica, Madrid, Spain (2009)Google Scholar
  54. 54.
    Delgado, F.G., Luna, J.G.V.: Feasibility of new-generation infrared screening for breast cancer in rural communities. US Obstet. Gynecol. Touch Briefings 5, 52–56 (2010)Google Scholar
  55. 55.
    Antonini, S., Kolaric, D., Nola, I.A., Herceg, Z., Ramljak, V., Kulis, T., Holjevac, J.K., Ferencic, Z.: Thermography surveillance after breast conserving surgery-three cases. In: 53rd International Symposium ELMAR, Croatia, pp. 317–319 (2011)Google Scholar
  56. 56.
    Kolaric, D., Herceg, Z., Nola, I.A., Ramljak, V., Kulis, T., Holjevac, J.K., Deutsch, J.A., Antonini, S.: Thermography-a feasible method for screening breast cancer. Coll. Antropol. 37(2), 583–588 (2013)Google Scholar
  57. 57.
    Motta, L.S., Conci, A., Lima, R.C.F., Diniz, E.M.: Automatic segmentation on thermograms in order to aid diagnosis and 2D modeling. In: Proceedings of 10th Workshop em Informatica Medica, Belo Horizonte, MG, Brazil, vol. 1, pp. 1610-1619 (2010). Accessed 19 March 2015
  58. 58.
    Bharathi, G.B., Francis, S.V., Sasikala, M., Sandeep, J.D.: Feature analysis for abnormality detection in breast thermogram sequences subject to cold stress. In: Proceedings of the National Conference on Man Machine Interaction (NCMMI), 15-2 (2014)Google Scholar
  59. 59.
    Beware of Poor Breast Thermograms, ILSI Thermography Service.
  60. 60.
    Etehadtavakol, M., Ng, E.Y.K.: Breast thermography as a potential non-contact method in the early detection of cancer: a review. J. Mech. Med. Biol. 2(13), 1330001.1–1330001.20 (2013)Google Scholar
  61. 61.
    Ville Marie Medical Center. Accessed 31 Jan 2016
  62. 62.
    Koay, J., Herry, C., Frize, M.: Analysis of breast thermography with an artificial neural network. Eng. Med. Biol. Soc. IEMBS 1(1), 1159–1162 (2004)CrossRefGoogle Scholar
  63. 63.
    BioBD. Bancode Dadosde Pesquisa Biomedica (2012). Accessed 23 Jan 2016
  64. 64.
    Araujo, M.C., Lima, R.C.F., Santos, F.: Desenvolvimento de um banco de dados como ferramenta auxiliary na deteccao precoce de cancer de mama’30 Iberian-Latin-American Congress on Computational Methods in Engineering, vol. 1, pp. 1–15. Armacao dos Buzios, RJ, Brazil (2009)Google Scholar
  65. 65.
    Conci, A., Lima, R.C.F., Fontes, C.A.P., Motta, L.S., Resmini, R.: A new method for automatic segmentation of the region of interest of thermographic breast image. Thermol. Int. 20(4), 134–135 (2010)Google Scholar
  66. 66.
    Conci, A., Lima, R.C.F., Fontes, C.A.P., Borchartt, T.B., Resmini, R.: A new method to aid to the breast diagnosis using fractal geometry. Thermol. Int. 20(4), 135–136 (2010)Google Scholar
  67. 67.
    Borchartt, T.B., Resmini, R., Motta, L.S., Clua, E.W.G., Conci, A., Viana, M.J.A., Santos, L.C., Lima, R.C.F., Sanchez, A.: Combining approaches for early diagnosis of breast diseases using thermal imaging’. Int. J. Innov. Comput. Appl. 3(4), 163–183 (2012)CrossRefGoogle Scholar
  68. 68.
    Gerasimova, E., Audit, B., Roux, S.G., Khalil, A., Gileva, O., Argoul, F., Naimark, O., Arneodo, A.: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front. Physiol. 5(176), 1–11 (2014)zbMATHGoogle Scholar
  69. 69.
    Gileva, O.S., Freynd, G.G., Orlov, O.A., Libik, T.V., Gerasimova, E.I., Plekhov, O.A.: Interdisciplinary approaches to early diagnosis and screening of tumors and precancerous diseases (for example, breast cancer). RFBR J. 74–75, 93–99 (2012)Google Scholar
  70. 70.
    Qi, H., Kuruganti, P.T., Snyder, W.E.: Detecting breast cancer from thermal infrared images by asymmetry analysis. Biomedical Engineering Handbook 27(1–27), 14 (2006)Google Scholar
  71. 71.
    Jin-Yu, Z., Yan, C., Xian-Xiang, H.: IR thermal image segmentation based on enhanced genetic algorithms and two- dimensional classes square error. In: Second International Conference on Information and Computation Science, vol. 2(1), pp. 309–312 (2009)Google Scholar
  72. 72.
    Kapoor, P., Prasad, S.V.A.V.: Image processing for early diagnosis of breast cancer using infrared images. In: 2nd International Conference on Computer and Automation Engineering, vol. 3(1), pp. 564–566 (2010)Google Scholar
  73. 73.
    Zadeh, H.G., Kazerouni, I.A., Haddadnia, J.: Distinguish breast cancer based on thermal features in infrared images. Canadian J. Image Process. Comput. Vis. 2(6), 54–58 (2011)Google Scholar
  74. 74.
    Golestani, N., EtehadTavakol, M., Ng, E.Y.K.: Level set method for segmentation of infrared breast thermograms. EXCLI J. 13, 241–251 (2014)Google Scholar
  75. 75.
    Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47(7), 2454–2466 (2014)CrossRefGoogle Scholar
  76. 76.
    Torbati, N., Ayatollahi, A., Kermani, A.: An efficient neural network based method for medical image segmentation. Comput. Biol. Med. 44, 76–87 (2014)CrossRefGoogle Scholar
  77. 77.
    Krawczyk, B., Schaefer, G., Woźniak, M.: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification. Artif. Intell. Med. 65(3), 219–227 (2015)CrossRefGoogle Scholar
  78. 78.
    Li, H., Burgess, A.E.: Evaluation of signal detection performance with pseudo-color display and lumpy backgrounds. In: Kundel, H.L. (ed.) SPIE, Medical Imaging: Image Perception, Newport Beach, vol. 3036, pp. 143–149 (1997)Google Scholar
  79. 79.
    Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy models and algorithms for pattern recognition and image processing. Kluwer, Norwell (1999)CrossRefzbMATHGoogle Scholar
  80. 80.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sourav Pramanik
    • 1
    Email author
  • Mrinal Kanti Bhowmik
    • 2
  • Debotosh Bhattacharjee
    • 1
  • Mita Nasipuri
    • 1
  1. 1.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Computer Science and EngineeringTripura University (A Central University)SuryamaninagarIndia

Personalised recommendations