Hybrid Swarms Optimization Based Image Segmentation

  • Mohamed Abd El AzizEmail author
  • Ahmed A. Ewees
  • Aboul Ella Hassanien


This chapter proposed multilevel thresholding hybrid swarms optimization algorithm for image segmentation. The proposed algorithm is inspired by the behavior of fireflies and real spider. It uses Firefly Algorithm (FA) and Social Spider Optimization (SSO) algorithm (FASSO). The objective function used for achieving multilevel thresholding is the maximum between class variance criterion. The proposed algorithm uses the FA to optimize threshold, and then uses this thresholding value to partition the images through SSO algorithm of a powerful global search capability. Experimental results demonstrate the effectiveness of the FASSO algorithm of image segmentation and provide faster convergence with relatively lower CPU time.


Swarms optimization Firefly Algorithm Social Spider Optimization Multilevel thresholding Image segmentation 


  1. 1.
    Sarkar, S., Sen, N., Kundu, A., Das, S., Chaudhuri, S.S.: A differential evolutionary multilevel segmentation of near infra-red images using Renyi’s entropy. In: Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), pp. 699–706. Springer Berlin (2013)Google Scholar
  2. 2.
    Cuevas, E., Sossa, H.: A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst. Appl. 40(4), 1213–1219 (2013)CrossRefGoogle Scholar
  3. 3.
    Ngambeki, S.S., Ding, X., Nachipyangu, M.D.: Real time face recognition using region-based segmentation algorithm. Int. J. Eng. Res. Technol. 4(4) (2015). ESRSA PublicationsGoogle Scholar
  4. 4.
    Zhao, F., Xie, X.: An overview of interactive medical image segmentation. Ann. BMVA 7, 1–22 (2013)MathSciNetGoogle Scholar
  5. 5.
    Kim, S.H., An, K.J., Jang, S.W., Kim, G.Y.: Texture feature-based text region segmentation in social multimedia data. Multimed. Tools Appl. pp. 1–15 (2016)Google Scholar
  6. 6.
    Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K., Khare, S.: Satellite image segmentation based on different objective functions using genetic algorithm: a comparative study. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 730–734. IEEE (2015)Google Scholar
  7. 7.
    Ju, Z., Zhou, J., Wang, X., Shu, Q.: Image segmentation based on adaptive threshold edge detection and mean shift. In: 2013 4th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 385–388. IEEE (2013)Google Scholar
  8. 8.
    Li, Z., Liu, C.: Gray level difference-based transition region extraction and thresholding. Comput. Electr. Eng. 35(5), 696–704 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Tan, K.S., Isa, N.A.M.: Color image segmentation using histogram thresholding. Fuzzy C-means hybrid approach. Pattern Recognit. 44(1), 1–15 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Zhou, C., Tian, L., Zhao, H., Zhao, K.: A method of two-dimensional Otsu image threshold segmentation based on improved firefly algorithm. In: Proceeding of IEEE international conference on cyber technology in automation, control, and intelligent systems 2015, Shenyang, pp. 1420–1424 (2015)Google Scholar
  11. 11.
    Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)CrossRefGoogle Scholar
  12. 12.
    Guo, C., Li, H.: Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm. In: AI 2007: Advances in Artificial Intelligence, pp. 654–658. Springer, Berlin (2007)Google Scholar
  13. 13.
    Zhang, Yudong, Lenan, Wu: Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach. Entropy 13(4), 841–859 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dirami, A., Hammouche, K., Diaf, M., Siarry, P.: Fast multilevel thresholding for image segmentation through a multiphase level set method. Sig. Process. 93(1), 139–153 (2013)CrossRefGoogle Scholar
  15. 15.
    Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013)CrossRefGoogle Scholar
  16. 16.
    Yang, X.-S.: Cuckoo search and firefly algorithm: overview and analysis. Stud. Comput. Intell. 516, 1–26 (2013)Google Scholar
  17. 17.
    Marciniak, A., Kowal, M., Filipczuk, P., Korbicz, J.: Swarm intelligence algorithms for multi-level image thresholding. In: Intelligent Systems in Technical and Medical Diagnostics, pp. 301–311. Springer, Berlin (2014)Google Scholar
  18. 18.
    Ayala, H.V.H., dos Santos, F.M., Mariani, V.C., dos Santos Coelho, L.: Image thresholding segmentation based on a novel beta differential evolution approach. Expert Syst. Appl. 42(4), 2136–2142 (2015)CrossRefGoogle Scholar
  19. 19.
    Yang, J., Yang, Y., Yu, W., Feng, J.: Multi-threshold Image Segmentation based on K-means and Firefly Algorithm, Atlantis Press, pp. 134–142 (2013)Google Scholar
  20. 20.
    Yu, C., Jin, B., Lu, Y., Chen, X., et al.: Multi-threshold image segmentation based on firefly algorithm. In: Proceedings of ninth international conference on IIH-MSP 2013, Beijing, pp. 415–419 (2013)Google Scholar
  21. 21.
    He, L.F., Tong, X., Huang, S.W.: Mineral belt image segmentation using firefly algorithm. Adv. Mater. Res. 989–994, 4074–4077 (2014)CrossRefGoogle Scholar
  22. 22.
    Vishwakarma, B., Yerpude, A.: A Meta-heuristic approach for image segmentation using firefly algorithm. Int. J. Comput. Trends Technol. (IJCTT) 11(2), 69–73 (2014)CrossRefGoogle Scholar
  23. 23.
    Rajinikantha, V., Couceirob, M.S.: RGB histogram based color image segmentation using firefly algorithm. Procedia Comput. Sci. 46, 1449–1457 (2015)CrossRefGoogle Scholar
  24. 24.
    Erdmann, H., Wachs-Lopes, G., Gallão, C., Ribeiro, M.P., Rodrigues, P.S.: A Study of a Firefly Meta-Heuristics for Multithreshold Image Segmentation, Developments in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol. 19, pp. 279–295. Springer, Berlin (2015)Google Scholar
  25. 25.
    Chen, K., Zhou, Y., Zhang, Z., Dai, M., Chao, Y., Shi, J.: Multilevel image segmentation based on an improved firefly algorithm. Math. Probl. Eng. 2016, 1–12 (2016)Google Scholar
  26. 26.
    Djerou, L., Khelil, N., Dehimi, H. E., & Batouche, M.: Automatic multilevel thresholding using binary particle swarm optimization for image segmentation. In: International Conference of Soft Computing and Pattern Recognition, 2009. SOCPAR’09, pp. 66–71. IEEE (2009)Google Scholar
  27. 27.
    Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)CrossRefGoogle Scholar
  28. 28.
    Nakib, A., Roman, S., Oulhadj, H., Siarry, P.: Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization. In: 29th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, 2007. EMBS 2007, pp. 5563–5566 (2007)Google Scholar
  29. 29.
    Wei, C., Kangling, F.: Multilevel thresholding algorithm based on particle swarm optimization for image segmentation. In: 27th Chinese Conference in Control, 2008. CCC 2008, pp. 348–351. IEEE (2008)Google Scholar
  30. 30.
    Yin, P.Y.: Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184(2), 503–513 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Zhiwei, Y., Zhengbing, H., Huamin, W., Hongwei, C.: Automatic threshold selection based on artificial bee colony algorithm. In: The 3rd International Workshop on Intelligent Systems and Applications (ISA), 2011, pp. 1–4 (2011)Google Scholar
  32. 32.
    Richard, M., Marie, B.-A., Guilhelm, S., Pascal, D.: Image Segmentation Using Socials Agents. 21 p. (2008)Google Scholar
  33. 33.
    Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  34. 34.
    Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18, 89–98 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013)CrossRefGoogle Scholar
  36. 36.
    Su, H., Cai, Y.: Firefly algorithm optimized extreme learning machine for hyperspectral image classification. In: 2015 23rd International Conference on Geoinformatics, Wuhan, pp. 1–4 (2015)Google Scholar
  37. 37.
    Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: Performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)CrossRefGoogle Scholar
  38. 38.
    Kanimozhi, T., Latha, K.: An integrated approach to region based image retrieval using firefly algorithm and support vector machine. Neurocomputing 151(3), 1099–1111 (2015)CrossRefGoogle Scholar
  39. 39.
    Yang, X.-S. Firefly Algorithm, Lvy Flights and Global Optimization, Research and Development in Intelligent Systems XXVI, pp. 209–218 (2010)Google Scholar
  40. 40.
    Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Horng, M.H., Lee, M.C., Liou, R.J., Lee, Y.X.: Firefly meta-heuristic algorithm for training the radial basis function network for data classification and disease diagnosis, pp. 115–132. INTECH Open Access Publisher (2012)Google Scholar
  42. 42.
    Rajini, A., David, V.K.: A hybrid metaheuristic algorithm for classification using micro array data. Int. J. Sci. Eng. Res. 3(2), 1–9 (2012)Google Scholar
  43. 43.
    Yang, Xin-She: Firefly algorithms for multimodal optimization. Stoch. Algorithms: Found. Appl. 5792, 169–178 (2009)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)CrossRefGoogle Scholar
  45. 45.
    Zhou, Z., Zhu, S., Zhang, D.: A Novel K-harmonic means clustering based on enhanced firefly algorithm. In: Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques, pp. 140–149, Springer International Publishing (2015)Google Scholar
  46. 46.
    Yang, X.-S.: Nature-inspired Metaheuristic Algorithms, Luniver Press, pp. 84–85 (2010)Google Scholar
  47. 47.
    Arora, S., Singh, S.: The firefly optimization algorithm: convergence analysis and parameter selection. Int. J. Comput. Appl. 69(3), 48–52 (2013)Google Scholar
  48. 48.
    Cuevas, E., Cienfuegos, M., Zald’ivar, D., Prez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  49. 49.
    Boudia, M.A., Hamou, R.M., Amine, A., Rahmani, M.E., Rahmani, A.: A new multilayered approach for automatic text summaries mono-document based on social spiders. Computer Science and Its Applications, pp. 193–204. Springer International Publishing, Berlin (2015)CrossRefGoogle Scholar
  50. 50.
    Benahmed, K., Merabti, M., Haffaf, H.: Inspired social spider behavior for secure wireless sensor networks. Int. J. Mob. Comput. Multimed. Commun. (IJMCMC) 4(4), 1–10 (2012)CrossRefGoogle Scholar
  51. 51.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th IEEE International Conference on Computer Vision, vol. 2, pp. 416–423. IEEE, Chicago (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Mohamed Abd El Aziz
    • 1
    Email author
  • Ahmed A. Ewees
    • 2
  • Aboul Ella Hassanien
    • 3
    • 4
  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Department of ComputerDamietta UniversityDamiettaEgypt
  3. 3.Faculty of Computers and InformationCairo UniversityGizaEgypt
  4. 4.Scientific Research Group in Egypt (SRGE)GizaEgypt

Personalised recommendations