A NIME Reader pp 211-222 | Cite as

2005: Towards a Dimension Space for Musical Devices

  • David BirnbaumEmail author
  • Rebecca Fiebrink
  • Joseph Malloch
  • Marcelo M. Wanderley
Part of the Current Research in Systematic Musicology book series (CRSM, volume 3)


While several researchers have grappled with the problem of comparing musical devices across performance, installation, and related contexts, no methodology yet exists for producing holistic, informative visualizations for these devices. Drawing on existing research in performance interaction, human-computer interaction, and design space analysis, the authors propose a dimension space representation that can be adapted for visually displaying musical devices. This paper illustrates one possible application of the dimension space to existing performance and interaction systems, revealing its usefulness both in exposing patterns across existing musical devices and aiding in the design of new ones.


Dimension Space Space Analysis Musical Process Dimension Plot Musical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berthaut, F., Desainte-Catherine, M., & Hachet, M. (2010). Drile: An immersive environment for hierarchical live-looping. In Proceedings of the International Conference on New Interfaces for Musical Expression, Sydney, Australia.Google Scholar
  2. Berthaut, F., Zappi, V., & Mazzanti, D. (2014). Scenography of immersive virtual musical instruments. In VR Workshop: Sonic Interaction in Virtual Environments (SIVE) (pp. 19–24). IEEE.Google Scholar
  3. Blaine, T., & Fels, S. (2003). Contexts of collaborative musical experiences. In Proceedings of the International Conference on New Interfaces for Musical Expression (pp. 129–134). Canada: Montreal.Google Scholar
  4. Boie, R., Ruedisueli, L. W., & Wagner, E. (1989). Gesture sensing via capacitive moments. Report, AT&T Bell Laboratories.Google Scholar
  5. Bongers, B. (2000). Physical interfaces in the electronic arts. Interaction theory and interfacing techniques for real-time performance. In M. Wanderley and M. Battier (Eds.), Trends in gestural control of music. IRCAM—Centre Pompidou, Paris.Google Scholar
  6. Camurri, A. (1995). Interactive dance/music systems. In Proceedings of the International Computer Music Conference (pp. 245–252). San Francisco: California.Google Scholar
  7. Fels, S., & Vogt, F. (2002). Tooka: Exploration of two person instruments. In Proceedings of the International Conference on New Interfaces for Musical Expression (pp. 116–121). Ireland: Dublin.Google Scholar
  8. Graham, T. C. N., Watts, L. A., Calvary, G., Coutaz, J., Dubois, E., & Nigay, L. (2000). A dimension space for the design of interactive systems within their physical environments. In Proceedings of the Conference on Designing Interactive Systems (pp. 406–416).Google Scholar
  9. Jordà, S. (2003). Interactive music systems for everyone: Exploring visual feedback as a way for creating more intuitive, efficient and learnable instruments. In Proceedings of SMAC.Google Scholar
  10. MacLean, A. & McKerlie, D. (1995). Design space analysis and use-representations. Technical Report EPC-1995-102. Cambridge, England: Rank Xerox Research Centre.Google Scholar
  11. MacLean, A., Bellotti, V., & Shum, S. (1993). Developing the design space with design space analysis. In P. F. Byerley, P. J. Barnard, & J. May (Eds.), Computers, communication and usability: Design issues, research and methods for integrated services. North Holland Series in Telecommunication (pp. 197–219). Amsterdam: Elsevier.Google Scholar
  12. Malloch, J., Birnbaum, D., Sinyor, E., & Wanderley, M. M. (2006). A new conceptual framework for digital musical instruments. Proceedings of the International Conference on Digital Audio Effects (DAFx) (pp. 49–52). Canada: Montreal.Google Scholar
  13. Mathews, M. V. (1989). The conductor program and mechanical baton. In M. Mathews & J. Pierce (Eds.), Current directions in computer music research (pp. 263–281). Cambridge, MA: MIT Press.Google Scholar
  14. Morreale, F., Angeli, A. D., & O’Modhrain, S. (2014). Musical interface design: An experience-oriented framework. In Proceedings of the International Conference on New Interfaces for Musical Expression, London, UK.Google Scholar
  15. Mulder, A. (1998). Design of virtual three-dimensional instruments for sound control. Ph.D. thesis, Simon Fraser University.Google Scholar
  16. Newton-Dunn, H., Nakano, H., & Gibson, J. (2003). Block jam: A tangible interface for interactive music. Journal of New Music Research, 32(4), 383–393.CrossRefGoogle Scholar
  17. Palacio-Quintin, C. (2003). The hyper-flute. In Proceedings of the International Conference on New Interfaces for Musical Expression (pp. 206–207). Canada: Montreal.Google Scholar
  18. Paradiso, J. A. (1999). The brain opera technology: New instruments and gestural sensors for musical interaction and performance. Journal of New Music Research, 8(2), 130–149.CrossRefGoogle Scholar
  19. Pennycook, B. W. (1985). Computer-music interfaces: A survey. ACM Computing Surveys (CSUR), 17(2), 267–289.CrossRefGoogle Scholar
  20. Piringer, J. (2001). Elektronische Musik und Interaktivität: Prinzipien, Konzepte, Anwendungen. Ph.D. thesis, Institut für Gestaltungs-und Wirkungsforschung der Technischen Universität Wien.Google Scholar
  21. Pressing, J. (1990). Cybernetic issues in interactive performance systems. Computer Music Journal, 14(1), 12–25.CrossRefGoogle Scholar
  22. Pressing, J. (1997). Some perspectives on performed sound and music in virtual environments. Presence, 6, 1–22.CrossRefGoogle Scholar
  23. Schloss, W. A. (1990). Recent advances in the coupling of the language max with the mathews/boie radio drum. In Proceedings of the International Computer Music Conference (pp. 398–400). San Francisco, CA.Google Scholar
  24. Tanaka, A. and Bongers, B. (2001). Global string: A musical instrument for hybrid space. In M. Fleischmann and W. Strauss (Eds.), Proceedings: cast01//Living in Mixed Realities (pp. 177–181). FhG—Institut Medienkommunikation.Google Scholar
  25. Ulyate, R., & Bianciardi, D. (2001). The interactive dance club: Avoiding chaos in a multi participant environment. In Proceedings of the International Conference on New Interfaces for Musical Expression (pp. 54–56). WA: Seattle.Google Scholar
  26. Waisvisz, M. (1985). The Hands, a set of remote MIDI-controllers. In Proceedings of the International Computer Music Conference (pp. 313–318). San Francisco, California: International Computer Music Association.Google Scholar
  27. Wanderley, M. M., Orio, N., & Schnell, N. (2000). Towards an analysis of interaction in sound generating systems. In ISEA Conference Proceedings.Google Scholar
  28. Wanderley, M. M., & Orio, N. (2002). Evaluation of input devices for musical expression: Borrowing tools from HCI. Computer Music Journal, 26(3), 62–76.Google Scholar
  29. Winkler, T. (2000). Audience participation and response in movement-sensing installations. In Proceedings of the International Computer Music Conference (pp. 137–140). San Francisco: California.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Birnbaum
    • 1
    Email author
  • Rebecca Fiebrink
    • 2
  • Joseph Malloch
    • 3
  • Marcelo M. Wanderley
    • 4
  1. 1.Immersion CorporationSan JoseUSA
  2. 2.Goldsmiths, University of LondonLondonUK
  3. 3.Université Paris-Saclay, ExSitu, Inria, and Université Paris-Sud, LRI and Université Paris-Saclay, CNRSSaint-AubinFrance
  4. 4.Input Devices and Music Interaction Laboratory (IDMIL), Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT)McGill UniversityMontrealCanada

Personalised recommendations